Reconstruction of Special and General Relativity

  • Peter MittelstaedtEmail author
Part of the Fundamental Theories of Physics book series (FTPH, volume 169)


The historical development of the Theory of Special Relativity offers a rather complicated and confusing impression. At the end of the nineteenth century we find several important philosophical investigations by Ernst Mach, Henri Poincaré about the underlying philosophical prejudices of Newton’s theory of space and time and of Classical Mechanics. In addition, we find important mathematical contributions by Poincaré and Lorentz about the structure of space and time. Finally, there was an extensive discussion about the meaning of the Michelson experiment, which was considered – erroneously – by many physicists as an experimentum crucis for the validity of Special Relativity. Actually, the Michelson experiment demonstrate merely the isotropy of the so-called two-ways velocity of light. We will come back to this point later.


Classical Mechanic Special Relativity Universal Time Inertial System Time Dilatation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Becker, O. (Ed.). (1965). Zur Geschichte der griechischen Mathematik. Darmstadt: Wissenschaftliche Buchgesellschaft.zbMATHGoogle Scholar
  2. Ehlers, J., Pirani, F. A. E., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O´Raiffeartaigh (Ed.), General relativity (pp. 63–84). Oxford: Clarendon.Google Scholar
  3. Franck, Ph, & Rothe, H. (1911). Über die transformation der Raum-Zeitkoordinaten von ruhenden auf bewegte systeme. Annalen der Physik, 34, 825–855.ADSCrossRefGoogle Scholar
  4. Gamov, G. (1946). Mr. Tompkins in wonderland. New York: Macmillan.Google Scholar
  5. Hawking, S. W., & Ellis, G. F. R. (1973). The large scale structure of space-time. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  6. Huber, R. (2000). Einstein und Poincaré (pp. 267–273). Paderborn: Mentis.Google Scholar
  7. Ignatowski, V. W. (1910). Einige allgemeine Bemerkungen zum Relativitätsprinzip. Physikalische Zeitschrift, 11, 972–976.Google Scholar
  8. Laugwitz, D. (1960). Differentialgeometrie. Stuttgart: B. G. Teubner.zbMATHGoogle Scholar
  9. Lévy-Leblond, J. M. (1976). One more derivation of the Lorentz transformation. American Journal of Physics, 44, 271–277.ADSCrossRefGoogle Scholar
  10. Mach, E. (1901). Die Mechanik in ihrer Entwicklung (4th ed.). Leipzig: F. A. Brockhaus. English trans.: (1902). The science of mechanics (T. J. McCormack, Trans.). Chicago: Open Court.Google Scholar
  11. Martzke, R., & Wheeler, J. A. (1964). Gravitation as geometry I: The geometry of space-time and the geometrodynamical standard meter. In H. Y. Chiu & W. F. Hoffman (Eds.), Gravitation and relativity (pp. 40–64). New York: A. Benjamin.Google Scholar
  12. Mittelstaedt, P. (1976b). Der Zeitbegriff in der Physik. Mannheim: BI-Wissenschaftsverlag.Google Scholar
  13. Mittelstaedt, P. (1976a). Philosophical problems of modern physics. Dordrecht: D. Reidel Publ. Co.Google Scholar
  14. Mittelstaedt, P. (1995). Klassische mechanik (2nd ed.). Mannheim: Bilbliographisches Institut.Google Scholar
  15. Mittelstaedt, P. (2006). Intuitiveness and Truth in Modern Physics. In E. Carson & R. Huber (Eds.), Intuition and the axiomatic method (pp. 251–266). Dordrecht: Springer.CrossRefGoogle Scholar
  16. Petrow, A. S. (1964). Einstein-Räume. Berlin: Akademie Verlag.zbMATHGoogle Scholar
  17. Poincare, H. (1898). La mesure du temps. Revue de metaphysique et de moral, VI, 1–13.Google Scholar
  18. Schröter, J., & Schelb, U. (1994). A space-time theory with rigorous axiomatics. In: Majer, U. & Schmidt, H.-J. (Eds.), Semantical aspects of spacetime theories. Mannheim: BI-Wissenschaftsverlag.Google Scholar
  19. Sexl, R. U., & Urbantke, H. K. (1992). Relativität, Gruppen, Teilchen (3rd ed.). Wien/New York: Springer.zbMATHGoogle Scholar
  20. Stachel, J. (1982). Einstein and Michelson: The context of discovery and the context of justification. Astronomische Nachrichten, 303, 47–53.MathSciNetADSCrossRefGoogle Scholar
  21. Stachel, J. (1989). Quale cancone cantarono le sirene. In U. Curi (Ed.), L’opera di Einstein (pp. 21–37). Ferrara: Gabriele Corbino & Co.Google Scholar
  22. Stachel, J. (2002). Einstein from B to Z. Boston: Birkhäuser.zbMATHGoogle Scholar
  23. Wheeler, J. A. (1973). From relativity to mutability. In J. Mehra (Ed.), The physicists conception of nature (pp. 202–247). Dordrecht: Reidel.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Inst. Theoretische PhysikUniversität KölnKölnGermany

Personalised recommendations