Skip to main content

Revision with Conditional Probability Functions: Two Impossibility Results

  • Chapter
  • First Online:
Dynamic Formal Epistemology

Part of the book series: Synthese Library ((SYLI,volume 351))

  • 826 Accesses

Abstract

In the general framework which takes conditional probability functions as a primitive notion, we prove two triviality results about the possibility of defining the probability Pr(A > B,Γ) of a counterfactual as the probability of the consequent B after some revision of the probability function that puts the probability of the antecedent A to 1. The paper is divided in three parts. In the first part, we present the context in which this research takes place and provide the formal tools we will use in the two other parts. In the second part, we present our first triviality result: Any probability revision process that satisfies the identity \(\textrm{Pr}(A>B, \Gamma) = \textrm{Pr}^{A}(B,\Gamma)\) for all Pr, A, B and Γ (where \(\textrm{Pr}^{A})\) is any revision of the probability distribution Pr which sets \(\textrm{Pr}^{A}(A, \Gamma) = 1)\) is trivial in a sense that will be specified. Finally, in the third part, we prove another triviality result: Any probability revision process that satisfies the identity \(\textrm{Pr}(A>B, \Gamma) = \textrm{Pr}^{A}(B,\Gamma_{A}^{\ast})\) for all Pr, A, B and Γ (where \(\Gamma_{A}^{\ast}\) is a revision of the background Γ in the light of A) is also trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boutilier C (1995) On the revision of probabilistic belief states. Notre Dame Journal of Formal Logic 36(1):158–183

    Article  Google Scholar 

  • Dubois D, Prade H (1988) Possibility theory: An approach to computerized processing of uncertainty. Plenum Publishing Company, New York

    Google Scholar 

  • Field H (1977) Logic, meaning, and conceptual role. The Journal of Philosophy, LXXXIV(7):379–409

    Google Scholar 

  • Van Fraassen B (1981) Probabilistic semantics objectified: Postulates and logics. Journal of Philosophical Logic 10:371–394

    Article  Google Scholar 

  • Gärdenfors P (1988) Knowledge in flux. MIT Press, Cambridge

    Google Scholar 

  • Joyce JM (1999) The foundations of causal decision theory. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Leblanc H (1979) Probabilistic semantics for first-order logic. Zeitschr. f. Logik and Grundlagen d. Math. Bd. 25:497–509

    Article  Google Scholar 

  • Leblanc H, Roeper P (2000) Probability theory and probability semantics. University of Toronto Press, Toronto

    Google Scholar 

  • Lewis D (1973) Counterfactuals. Basil Blackwell, Oxford

    Google Scholar 

  • Lewis D (1976) Probabilities of conditionals and conditional probabilities. Philosophical Review 85:297–315

    Article  Google Scholar 

  • Morgan C (1982) There is a probabilistic semantics for every extension of classical sentence logic. Journal of Philosophical Logic 11:431–442

    Google Scholar 

  • Morgan C (2003) two values, three values, many values, no values. In: Fitting M, Orlowska E (eds) Beyond two: Theory and applications of multiple valued logic. Springer Verlag, Berlin, pp 348–374

    Google Scholar 

  • Popper K (1934) Logik der Forschung. Spinger Verlag, Vienna, English translation (1959) The Logic of Scientific Discovery. Routledge, London.

    Google Scholar 

  • Spohn W (1988) Ordinal conditional functions: A dynamic theory of epistemics states. In: Harper WL, Skyrms B (eds) Causation in Decision, Belief Change, and Statistics, vol II, Reidel, Dordrecht

    Google Scholar 

  • Stalnaker R (1968) A theory of conditionals. In: Rescher N (ed) Studies in Logical Theory, Blackwell, Oxford, APQ Monography No. 2, reprinted in Causations and Conditionals, Sosa E (ed), Oxford University Press (1968), pp 165–179

    Google Scholar 

  • Stalnaker R (1970) Probability and conditionals. Philosophy of Science 37(1):64–80

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous referee for very helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lepage .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 9.1

If Γ is Pr-normal, then \(\mathrm{Pr} (A \wedge \neg A,\Gamma ) = 0\).

Proof

Suppose Γ is Pr-normal. From NP.3 and NP.8 we have:

$$1 = \mathrm{Pr} (A \vee \neg A,\Gamma ) = \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (\neg A,\Gamma ) - \mathrm{Pr} (A \wedge \neg A,\Gamma ).$$

Applying NP.5 to the right we have:

$$1 = \mathrm{Pr} (A,\Gamma ) + 1 - \mathrm{Pr} (A,\Gamma ) - \mathrm{Pr} (A \wedge \neg A,\Gamma ).$$

Simple arithmetic gives the desired result.

Lemma 9.2

If Γ is Pr-normal but \(\Gamma \cup {\{}A{\}}\) is Pr-abnormal, then \(\mathrm{Pr} (A,\Gamma ) = 0\).

Proof

Suppose Γ is Pr-normal but \(\Gamma \cup \{A\}\) is Pr-abnormal. From Lemma 9.1 and NP.4, we have:

$$0 = \mathrm{Pr} (A \wedge \neg A,\Gamma ) = \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (\neg A,\Gamma \cup \{A\}).$$

Since \(\Gamma \cup \{A\}\) is Pr-abnormal, \(\mathrm{Pr} (\neg A,\Gamma \cup \{A\}) = 1\) and thus \(\mathrm{Pr} (A,\Gamma ) = 0\).

Lemma 9.3

\(\mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (A \wedge B,\Gamma )\).

Proof

If Γ is Pr-abnormal, the result is immediate, so suppose that Γ is Pr-normal. By the definition of ⊃ and applying NP.3, we have:

$$\mathrm{Pr} (A \supset B,\Gamma ) = \mathrm{Pr} (\neg A \vee B,\Gamma ) = \mathrm{Pr} (\neg A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (\neg A \wedge B,\Gamma ).$$

Applying NP.6 and NP.4 yields:

$$\mathrm{Pr} (A \supset B,\Gamma ) = \mathrm{Pr} (\neg A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (B,\Gamma )\times \mathrm{Pr} (\neg A,\Gamma \cup \{B\}).$$

Since Γ is Pr-normal, we can apply NP.5 to obtain:

$$\mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (B,\Gamma )\times \mathrm{Pr} (\neg A,\Gamma \cup \{B\}).$$
((9.1))

On one hand, suppose that \(\Gamma \cup \{B\}\) is Pr-abnormal. Then applying Lemma 9.2 to (9.1) yields:

$$\mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ).$$

But Lemma 9.2 and NP.6 and NP.4 ensure that \(\mathrm{Pr} (A \wedge B,\Gamma ) = 0\). So we have:

$$\mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (A \wedge B,\Gamma ).$$

On the other hand, suppose that \(\Gamma \cup \{B\}\) is Pr-normal. Then applying NP.5 to (9.1) gives:

$$\begin{gathered} \mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (B,\Gamma )\times (1 - \mathrm{Pr} (A,\Gamma \cup \{B\})) \\ = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (A \wedge B,\Gamma ) \end{gathered}$$

So, in either case, the result follows.

Lemma 9.4

\(\mathrm{If \ Pr} (A \supset B,\Gamma ) = 1\), then \(\mathrm{Pr} (A,\Gamma ) \le \mathrm{Pr} (B,\Gamma )\).

Proof

Suppose \(\mathrm{Pr} (A \supset B,\Gamma ) = 1\). Then from Lemma 9.3 we have:

$$1 = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (A \wedge B,\Gamma )$$

So by elementary arithmetic we have:

$$\mathrm{Pr} (A,\Gamma ) = \mathrm{Pr} (A \wedge B,\Gamma )$$

But by NP.1 and NP.4 and NP.6, we know:

$$\mathrm{Pr} (A \wedge B,\Gamma ) \le \mathrm{Pr} (B,\Gamma )$$

Hence the desired result follows.

Lemma 9.5

If \(\mathrm{Pr} (A,\Delta ) \le \mathrm{Pr} (B,\Delta )\) for all Δ, then \(\mathrm{Pr} (A \supset B,\Gamma ) = 1\) for all Γ.

Proof

Suppose \(\mathrm{Pr} (A,\Delta ) \le \mathrm{Pr} (B,\Delta )\) for all Δ. Let Γ be arbitrary. Then by NP.1 and NP.2 we have:

$$\mathrm{Pr} (B,\Gamma \cup \{A\}) = 1$$

But by Lemma 9.3 and NP.4 we have:

$$\mathrm{Pr} (A \supset B,\Gamma ) = 1 - \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\})$$

The desired result follows immediately from these two equations.

Lemma 9.6

Disjunction is the least upper bound, in the following sense:

  1. (A)

    \(\mathrm{Pr} (A,\Gamma ) \le \mathrm{Pr} (A \vee B,\Gamma )\) for all Γ.

  2. (B)

    \(\mathrm{Pr} (B,\Gamma ) \le \mathrm{Pr} (A \vee B,\Gamma )\) for all Γ.

  3. (C)

    Let C be any sentence such that:

    1. (i)

      \(\mathrm{Pr} (A,\Delta ) \le \mathrm{Pr} (C,\Delta )\) for all Δ, and

    2. (ii)

      \(\mathrm{Pr} (B,\Delta ) \le \mathrm{Pr} (C,\Delta )\) for all Δ.

Then for all Γ, \(\mathrm{Pr} (A \vee B,\Delta ) \le \mathrm{Pr} (C,\Delta )\).

Proof

For the (B) part, by NP.1 we know the maximum value for \(\mathrm{Pr} (B,\Gamma \cup \{A\})\) is 1, so by NP.3 and NP.4 we have:

$$\begin{array}{ll}&\mathrm{Pr} (A \vee B,\Gamma ) = \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\}) \nonumber \\ & \ge \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A,\Gamma )\end{array}$$
((9.2))

and the right hand side just reduces to \(\mathrm{Pr} (B,\Gamma )\), as desired. Part (A) follows in a similar fashion by first applying NP.6 to the conjunction. For the (C) part of the Lemma, suppose both of the following hold:

$$\mathrm{Pr} (A,\Delta ) \le \mathrm{Pr} (C,\Delta ) \hbox{for all} \Delta.$$
((9.3))
$$\mathrm{Pr} (B,\Delta ) \le \mathrm{Pr} (C,\Delta ) \hbox{for all} \Delta.$$
((9.4))

Taking Δ to be of the form \(\Gamma \cup {\{}A{\}}\) for arbitrary Γ, and using NP.1 and NP.2, we then obtain the following:

$$\mathrm{Pr} (C,\Gamma \cup \{A\}) = 1 \ \hbox{for all} \Gamma.$$
((9.5))
$$\mathrm{Pr} (C,\Gamma \cup \{B\}) = 1 \ \hbox{for all} \Gamma.$$
((9.6))

Next we multiply \(\mathrm{Pr} (A \vee B,\Gamma \cup \{C\})\) by \(\mathrm{Pr} (C,\Gamma )\) and apply NP.3 and NP.4:

$$\begin{aligned} \mathrm{Pr} (C,\Gamma ) & \times \mathrm{Pr} (A \vee B,\Gamma \cup \{C\}) = \nonumber \\ & \mathrm{Pr} (C,\Gamma )\times \mathrm{Pr} (A,\Gamma \cup \{C\}) + \mathrm{Pr} (C,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{C\}) \nonumber \\ & - \mathrm{Pr} (C,\Gamma )\times \mathrm{Pr} (A,\Gamma \cup \{C\})\times \mathrm{Pr} (B,\Gamma \cup \{A,C\}) \end{aligned}$$
((9.7))

Then applying NP.4 and NP.6 to the right hand side of (9.7), we obtain:

$$\begin{aligned}\mathrm{Pr} (C,\Gamma ) & \times \mathrm{Pr} (A \vee B,\Gamma \cup \{C\}) = \nonumber \\ & \quad \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (C,\Gamma \cup \{A\}) + \mathrm{Pr} (B,\Gamma )\times \mathrm{Pr} (C,\Gamma \cup \{B\}) \nonumber \\ & \quad - \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\})\times \mathrm{Pr} (C,\Gamma \cup \{A,B\})\end{aligned}$$
((9.8))

But then using (9.5) and (9.6) on the right of (9.8) we have:

$$\begin{aligned}\mathrm{Pr} (C,\Gamma ) & \times \mathrm{Pr} (A \vee B,\Gamma \cup \{C\}) = \nonumber \\ & \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\})\end{aligned}$$
((9.9))

Hence from (9.9), NP.1 and NP.3 we have:

$$\mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\}) \le \mathrm{Pr} (C,\Gamma )$$
((9.10))

Finally the desired result follows by applying NP.3 and NP.4 to the left hand side of (9.10)

Lemma 9.7

If \(\mathrm{Pr} (A,\Gamma ) = 1\), then \(\mathrm{Pr} (A \wedge B,\Gamma ) = \mathrm{Pr} (B,\Gamma )\).

Lemma 9.8

Suppose \(\mathrm{Pr} (A,\Gamma ) = 1\). Then by Thm 1.8, \(\mathrm{Pr} (A \vee B,\Gamma ) = 1\). So, by NP.3, we have:

$$1 = \mathrm{Pr} (A \vee B,\Gamma ) = \mathrm{Pr} (A,\Gamma ) + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A \wedge B,\Gamma )$$

Hence it follows that:

$$1 = 1 + \mathrm{Pr} (B,\Gamma ) - \mathrm{Pr} (A \wedge B,\Gamma )$$

The desired result then follows by elementary arithmetic.

Lemma 9.8

If \(\mathrm{Pr} (A,\Gamma ) = 1\), then \(\mathrm{Pr} (B,\Gamma ) = \mathrm{Pr} (B,\Gamma \cup \{A\})\)

Proof

Suppose \(\mathrm{Pr} (A,\Gamma ) = 1\). From NP.4, we have:

$$\begin{aligned} \mathrm{Pr} (A \wedge B,\Gamma ) & = \mathrm{Pr} (A,\Gamma )\times \mathrm{Pr} (B,\Gamma \cup \{A\}) \\ & = \mathrm{Pr} (B,\Gamma \cup \{A\}) \end{aligned}$$

The desired result then follows immediately by Lemma 9.7.

Lemma 9.9

\(\mathrm{Pr} (A > B,\Gamma ) \le \mathrm{Pr} (A \supset B,\Gamma )\), for all Γ.

Proof

By (3). and soundness, we have:

$$\mathrm{Pr} ((A > B) \supset (A \supset B),\Gamma ) = 1$$

The desired result then follows by Lemma 9.4.

Lemma 9.10

\(\mathrm{Pr} (B,\Gamma ) \le \mathrm{Pr} (A > B,\Gamma )\), for all Γ.

Proof

This result follows immediately from Lemma 9.4, Lemma 9.9, and Proposition 9.1.

Lemma 9.11

\(\Gamma \cup \{\neg A\} \ \mathrm{is \ Pr} ^A\)-abnormal.

Proof

By elementary arithmetic, we have:

$$\mathrm{Pr} ^A(A,\Gamma \cup \{\neg A\}) = 1 - (1 - \mathrm{Pr} ^A(A,\Gamma \cup \{\neg A\}))$$

For proof by contradiction, suppose \(\Gamma \cup \{\neg A\}\) is \(\mathrm{Pr} _A \)-normal. Then applying NP.5 to the right hand side, we obtain:

$$\mathrm{Pr} ^A(A,\Gamma \cup \{\neg A\}) = 1 - \mathrm{Pr} ^A(\neg A,\Gamma \cup \{\neg A\})$$

Applying NP.2 to the right hand side yields:

$$\mathrm{Pr} ^A(A,\Gamma \cup \{\neg A\}) = 1 - 1 = 0$$

But we know by (1)

$$\mathrm{Pr} ^A(A,\Gamma \cup \{\neg A\}) = 1$$

Thus the supposition is in error, and it must be the case that \(\Gamma \cup \{\neg A\}\) is PrA-abnormal.

Lemma 9.12

\(\mathrm{Pr} (\neg A > (A > B),\Gamma ) = 1\), for all Γ.

Proof

Applying (2), we have:

$$\mathrm{Pr} (\neg A > (A > B),\Gamma ) = \mathrm{Pr} ^{_{\neg A}}(A > B,\Gamma ), \hbox{for all}\ \Gamma .$$

But then applying Lemma 9.8 and (1) on the right hand side gives:

$$\mathrm{Pr} (\neg A > (A > B),\Gamma ) = \mathrm{Pr} ^{_{\neg A}}(A > B,\Gamma \cup \{\neg A\}), \ \hbox{for all}\ \Gamma .$$

Another application of (2) to the right hand side gives:

$$\mathrm{Pr} (\neg A > (A > B),\Gamma ) = \mathrm{Pr} ^{_{\neg AA}}(B,\Gamma \cup \{\neg A\}), \ \hbox{for all}\ \Gamma.$$

But then by Lemma 9.11, the right hand side must be 1.

Lemma 9.13

\(\mathrm{Pr} (\neg A,\Gamma ) \le \mathrm{Pr} (A > B,\Gamma )\), for all Γ.

Proof

This result follows immediately from Lemma 9.4, Lemma 9.9, and Lemma 9.12

Lemma 9.14

\(\mathrm{Pr} (\neg A \vee B,\Gamma ) \le \mathrm{Pr} (A > B,\Gamma )\), for all Γ.

Proof

The desired result is an immediate result of the part (C) of Lemma 9.6, along with Lemma 9.10 and Lemma 9.13.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lepage, F., Morgan, C. (2011). Revision with Conditional Probability Functions: Two Impossibility Results. In: Girard, P., Roy, O., Marion, M. (eds) Dynamic Formal Epistemology. Synthese Library, vol 351. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0074-1_9

Download citation

Publish with us

Policies and ethics