Representing the Modals

  • Adriane Rini
Part of the The New Synthese Historical Library book series (SYNL, volume 68)


The standard current system of classifying the modal syllogisms is that used by McCall (1963). In this system an assertoric (non-modal) proposition is denoted by X, a proposition about necessity by L, and a proposition about possibility by either M or Q depending on the kind of possibility involved. Thus, Barbara LLL is Barbara with premises and conclusion all necessary propositions, Barbara LXL is Barbara with the first premise a necessary proposition, the second premise assertoric, and the conclusion necessary, and so on.


Predicate Logic Modal Conversion Necessity Operator Predicate Term Substance Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, A. 1933, Die Aristotelische Theorie der Möglichkeitsschlüsse. Berlin: Junker. (Reprinted Darmstadt: Wissenschaftliche Buchgesellschaft, 1968).Google Scholar
  2. Hintikka, J. 1973, Time and Necessity: Studies in Aristotle’s Theory of Modality. Oxford: Clarendon Press.Google Scholar
  3. Johnson, F. 1989, ‘Models for Modal Syllogisms’. Notre Dame Journal of Formal Logic 30: 271–284.CrossRefGoogle Scholar
  4. Thomason, S.K. 1993, ‘Semantic analysis of the modal syllogistic’. Journal of Philosophical Logic 22: 111–128.CrossRefGoogle Scholar
  5. McCall, S. 1963, Aristotle’s Modal Syllogisms. Amsterdam: North-Holland Publishing Company.Google Scholar
  6. Rini, A.A. 2000, ‘Hupo in the prior analytics: A note on Disamis XLL’. History and Philosophy of Logic 21: 259–264.CrossRefGoogle Scholar
  7. Patterson, R. 1995, Aristotle’s Modal Logic. Essence and Entailment in the Organon. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Vilkko, R., and K.J.J. Hintikka, 2006, ‘Existence and predication from Aristotle to Frege’. Philosophy and Phenomenological Research 73: 359–377.CrossRefGoogle Scholar
  9. Brennan, T. 1997, ‘Aristotle’s modal syllogistic. A discussion of R. Patterson, Aristotle’s Modal Logic’. Oxford Studies in Ancient Philosophy 15: 207–231.Google Scholar
  10. Malink, M. 2006, ‘A reconstruction of Aristotle’s modal syllogistic’. History and Philosophy of Logic 27: 95–141.CrossRefGoogle Scholar
  11. Charles, D. 2000, Aristotle on Meaning and Essence. Oxford: Clarendon Press.Google Scholar
  12. Striker, G. 2009, Aristotle: Prior Analytics, Book I. Oxford: Clarendon Press.Google Scholar
  13. Ebert, T., and U. Nortmann, 2007, Aristoteles Analytica Priora Buch I. Berlin: Akademie Verlag.CrossRefGoogle Scholar
  14. Nortmann, U. 1996, Modale Syllogismen, mögliche Welten, Essentialismus: eine Analyse der aristotelischen Modallogik. Berlin, NY: Walter de Gruyter.Google Scholar
  15. Nortmann, U. 2002, ‘The logic of necessity in Aristotle—an outline of approaches to the modal syllogistic, together with a general account of de dicto and de re necessity’. History and Philosophy of Logic 23: 253–265.CrossRefGoogle Scholar
  16. Angelleli, I. 1979, ‘The Aristotelian modal syllogistic in modern modal logic’. In Lorenz (ed.), Konstruktionen versus Positionen, Vol I. Berlin: de Gruyter. 176–215.Google Scholar
  17. Schmidt, K.J. 1989, ‘Eine modal-prädikatenlogische Interpretation der modalen Syllogistik des Aristoteles’. Phronesis 34: 80–106.CrossRefGoogle Scholar
  18. Thom, P. 1996, The Logic of Essentialism. An Interpretation of Aristotle’s Modal Syllogistic. Dordrecht: Kluwer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Massey University, Philosophy - HPCPalmerston NorthNew Zealand

Personalised recommendations