Skip to main content

Low Temperature Transport in Tunnel Junction Arrays: Cascade Energy Relaxation

  • Conference paper
  • First Online:
Physical Properties of Nanosystems

Abstract

A theory of far-from-equilibrium transport in arrays of tunnel junctions is developed. We show that at low temperatures the energy relaxation ensuring tunneling current can become a cascade two-stage process: charge carriers lose their energy to a bosonic environment (electromagnetic fluctuations or electron-hole pairs), which, in its turn, relaxes the energy to the thermostat. We derive the current-voltage characteristics for the arrays and demonstrate that opening the energy gap in the environmental excitations spectrum completely suppresses the tunneling current. The consequences of the cascade relaxation in various physical systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu. V. Nazarov, Sov. Phys. JETP 68, 561 (1989).

    Google Scholar 

  2. Yu. V. Nazarov, Ann. Phys. (Leipzig) 16, 720 (2007).

    Google Scholar 

  3. M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990).

    Article  ADS  Google Scholar 

  4. S. M. Girvin, L. I. Glazman, M. Jonson, D. R. Penn, and M. D. Stiles Phys. Rev. Lett. 64, 3183 (1990).

    Article  ADS  Google Scholar 

  5. D. V. Averin and K. Likharev, in Quantum Efects in Small Disordered Systems, ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (Elsevier, Amsterdam, 1991); G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).

    Google Scholar 

  6. G.-L. Ingold and H. Grabert, Europhys. Lett. 14, 371 (1991).

    Article  ADS  Google Scholar 

  7. G.-L. Ingold and Yu. V. Nazarov, in Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, NATO ASI, Ser. B, Vol. 294 (Plenum, New York, 1991).

    Google Scholar 

  8. G.-L. Ingold, H. Grabert, and U. Eberhardt et al., Phys. Rev. B 50, 395 (1994).

    Article  ADS  Google Scholar 

  9. I. Petković, M. Aprili, S. E. Barnes, F. Beuneu, S. Maekawa, arXiv:0904.1780v1 (2009).

    Google Scholar 

  10. F. Chiodi, M. Aprili, and B. Reulet, arXiv:0908.1070v1 (2009).

    Google Scholar 

  11. A. Anthore, F. Pierre, H. Pothier, and D. Esteve, Phys. Rev. Lett. 90, 076806 (2003).

    Article  ADS  Google Scholar 

  12. A. V. Timofeev, C. Pascual Garcia, N. B. Kopnin, A. M. Savin, M. Meschke, F. Giazotto, and J. P. Pekola, Phys. Rev. Lett. 102, 017003 (2009).

    Article  ADS  Google Scholar 

  13. T. I. Baturina, D. R. Islamov, and Z. D. Kvon, JETP Lett. 75, 326 (2002).

    Article  ADS  Google Scholar 

  14. T. I. Baturina, Yu. A. Tsaplin, A. E. Plotnikov, and M. R. Baklanov, JETP Lett. 81, 10 (2005).

    Article  ADS  Google Scholar 

  15. G. Sambandamurthy, L. W. Engel, A. Johansson, E. Peled, and D. Shahar, Phys. Rev. Lett. 94, 017003 (2005).

    Article  ADS  Google Scholar 

  16. T. I. Baturina, A. Yu. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99, 257003 (2007).

    Article  ADS  Google Scholar 

  17. T. I. Baturina, A. Bilušić, A. Yu. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, Physica C 468, 316 (2008).

    ADS  Google Scholar 

  18. T. I. Baturina, A. Yu. Mironov, V. M. Vinokur, M. R. Baklanov, and C. Strunk, JETP Lett. 88, 752 (2008).

    Article  ADS  Google Scholar 

  19. M. Ovadia, B. Sacépé, and D. Shahar, Phys. Rev. Lett. 102, 176802 (2009).

    Article  ADS  Google Scholar 

  20. A. Savin, J. Pekola, M. Prunnila, J. Ahopelto, and P. Kivinen, Phys. Scr. T114, 57 (2004).

    Article  ADS  Google Scholar 

  21. N. B. Kopnin, Theory of Nonequilibrium Superconductivity, Clarendon Press, Oxford (2001).

    Book  Google Scholar 

  22. F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P. Pekola, Rev. Mod. Phys. 78, 217 (2006).

    Article  ADS  Google Scholar 

  23. I. S. Beloborodov, A. V. Lopatin, and V. M. Vinokur, Phys. Rev. B 72, 125121 (2005).

    Article  ADS  Google Scholar 

  24. A. V. Lopatin and V. M. Vinokur, Phys. Rev. B 75, 092201 (2007).

    Article  ADS  Google Scholar 

  25. N. B. Kopnin, Y. M. Galperin, J. Bergli, V. M. Vinokur, Phys. Rev. B 80, 134502 (2009).

    Article  ADS  Google Scholar 

  26. N. M. Chtchelkatchev, V. M. Vinokur, and T. I. Baturina, Phys. Rev. Lett. 103, 247003 (2009).

    Article  ADS  Google Scholar 

  27. N. M. Chtchelkatchev, V. M. Vinokur, and T. I. Baturina, Physica C (2009), doi:10.1016/j.physc.2009.11.008.

    Google Scholar 

  28. H. Grabert and M. H. Devoret, in Single Charge Tunneling, ed. by H. Grabert and M. H. Devoret, NATO ASI, Ser. B, Vol. 294, p. 1 (Plenum, New York, 1991).

    Google Scholar 

  29. R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. 24, 118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  30. J. Rollbühler and H. Grabert, Phys. Rev. Lett. 87, 126804 (2001).

    Article  ADS  Google Scholar 

  31. N. M. Chtchelkatchev et al., (to be published).

    Google Scholar 

  32. In an equilibrium, q T defines the long wave cut-off of the diffusive fluctuations. In can be shown that in the nonequilibrium case the same cut off retains with the change T → T eff [31].

    Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, vol. 10, Physical Kinetics, Butterworth-Heinemann Ltd 1981.

    Google Scholar 

  34. In an LC-line environment the excitations spectrum is linear, ω = vk, where v = c ∕ \sqrt{LC}, so νω = 1 ∕ v.

    Google Scholar 

  35. A. F. Volkov and S. M. Kogan, Usp. Fiz. Nauk 96, 633 (1968) [Sov. Phys. Usp. 11, 881 (1969)].

    Google Scholar 

  36. A. V. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987).

    Article  ADS  Google Scholar 

  37. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin) 1984.

    Google Scholar 

  38. M. V. Fistul, V. M. Vinokur, and T. I. Baturina, Phys. Rev. Lett. 100, 086805 (2008).

    Article  ADS  Google Scholar 

  39. V. M. Vinokur, T. I. Baturina, M. V. Fistul, A. Yu. Mironov, M. R. Baklanov, and C. Strunk, Nature 452, 613 (2008).

    Article  ADS  Google Scholar 

  40. Wenhao Wu and E. Bielejec, cond-mat/0511121 (2005).

    Google Scholar 

  41. S. I. Khondaker, I. S. Shlimak, J. T. Nicholls, M. Pepper, and D. A. Ritchie, Phys. Rev. B 59, 4580 (1999).

    Article  ADS  Google Scholar 

  42. I. Shlimak, K.-J. Friedland, and S. D. Baranovskii, Solid State Commun. 112, 21 (1999).

    Article  ADS  Google Scholar 

  43. A. Ghosh, M. Pepper, D. A. Ritchie, E. H. Linfield, R. H. Harrell, H. E. Beere, G. A. C. Jones, Phys. Status Solidi B 230, 211 (2002).

    Article  ADS  Google Scholar 

  44. A. I. Yakimov, A. V. Dvurechenskii, V. V. Kirienko, Yu. I. Yakovlev, A. I. Nikiforov, and C. J. Adkins, Phys. Rev. B 61, 10868 (2000).

    Article  ADS  Google Scholar 

  45. B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Conductors, ed. A.J. Efros and M. Pollack, (Elsevier, Amsterdam), 1985.

    Google Scholar 

  46. A. Kamenev and A. Andreev, Phys. Rev. B 60, 2218 (1999).

    Article  ADS  Google Scholar 

  47. The similar result was obtained within the the nonlinear Keldysh σ-model approach in [46] and by D. B. Gutman, Yu. Gefen, and A. D. Mirlin, Phys. Rev. Lett. 100, 086801 (2008).

    Google Scholar 

  48. B. L. Altshuler, V. E. Kravtsov, I. V. Lerner, and I. L. Aleiner, Phys. Rev. Lett. 102, 176803 (2009).

    Article  ADS  Google Scholar 

  49. A. M. Finkelstein, Sov. Sci. Rev. 14, 1 (1990).

    Google Scholar 

  50. I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005).

    Article  ADS  Google Scholar 

  51. D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys. (N.Y.) 321, 1126 (2006).

    Google Scholar 

  52. A. Salzberg and S. Prager, J. Chem. Phys. 38, 2587 (1963).

    Article  ADS  Google Scholar 

  53. V. L. Berezinskii, Sov. Phys. JETP 32, 493 (1971).

    MathSciNet  ADS  Google Scholar 

  54. J. M. Kosterlitz and D. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  55. A. Widom and S. Badjou, Phys. Rev. B 37, 7915 (1988).

    Article  ADS  Google Scholar 

  56. J. E. Mooij, B. J. van Wees, L. J. Geerligs, M. Peters, R. Fazio, and G. Schön, Phys. Rev. Lett. 65, 645 (1990).

    Article  ADS  Google Scholar 

  57. R. Fazio and G. Schön, Phys. Rev. B 43, 5307 (1991).

    Article  ADS  Google Scholar 

  58. A. Kanda and S. Kobayashi, J. Phys. Soc. Jpn. 64, 19 (1995).

    Article  ADS  Google Scholar 

  59. T. Yamaguchi, R. Yagi, S. Kobayashi, and Y. Ootuka, J. Phys. Soc. Jpn. 67, 729 (1998).

    Article  ADS  Google Scholar 

  60. B. Sacépé, C. Chapelier, T. I. Baturina, V. M. Vinokur, M. R. Baklanov, M. Sanquer, Phys. Rev. Lett. 101, 157006 (2008).

    Article  ADS  Google Scholar 

  61. A. Glatz, I. Aranson, V. Vinokur, N. Chtchelkatchev, and T. Baturina, arXiv:0910.0659v1 (2009).

    Google Scholar 

  62. V. E. Dubrov, M. E. Levinshtein, and M. S. Shur, ZhETP 70, 2014 (1976) [Sov. Phys. JETP 43, 1050 (1976)].

    Google Scholar 

  63. A. L. Efros and B. I. Shklovskii, Phys. Status Solidi B 76, 475 (1976).

    Article  ADS  Google Scholar 

  64. H. F. Hess, K. DeConde, T. F. Rosenbaum, and G. A. Thomas, Phys. Rev. B 25, 5578 (1982).

    Article  ADS  Google Scholar 

  65. M. Lee, J. G. Massey, V. L. Nguyen, and B. I. Shklovskii, Phys. Rev. B 60, 1582 (1999).

    Article  ADS  Google Scholar 

  66. J. J. Tu, C. C. Homes, and M. Strongin, Phys. Rev. Lett. 90, 017402 (2003).

    Article  ADS  Google Scholar 

  67. S. V. Syzranov, K. B. Efetov, and B. L. Altshuler, Phys. Rev. Lett. 103, 127001 (2009).

    Article  ADS  Google Scholar 

  68. L. Fleishman, D. C. Licciardello, and P. W. Anderson, Phys. Rev. Lett. 40, 1340 (1978).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Fazio, A. Shytov, A. Gurevich, I. Burmistrov and Ya. Rodionov for useful discussions. This work was supported by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357, by the Programs of the Russian Academy of Sciences, and by the Russian Foundation for Basic Research (Grant Nos. 09-02-01205 and 09-02-12206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Chtchelkatchev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Chtchelkatchev, N.M., Vinokur, V.M., Baturina, T.I. (2011). Low Temperature Transport in Tunnel Junction Arrays: Cascade Energy Relaxation. In: Bonca, J., Kruchinin, S. (eds) Physical Properties of Nanosystems. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0044-4_3

Download citation

Publish with us

Policies and ethics