Advertisement

Review of Linear and Nonlinear Controller Designs

  • Ioannis A. RaptisEmail author
  • Kimon P. Valavanis
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 45)

Abstract

This Chapter reviews several flight controller designs for unmanned rotorcraft. Flight control systems have been proposed and tested on a wide range of rotorcraft types and configurations. This review includes controller designs for several rotorcraft types such as full-scale, small-scale and experimental platforms (gimbaled on a vertical stand). Existing flight control systems use tools from all fields of control theory by incorporating into the controller design classical, modern and intelligent control techniques.

Keywords

Controller Design Main Rotor Loop Shaping State Linear Model Flight Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 2.
    N. Antequera, M. Santos, J.M. De la Cruz, A helicopter control based on eigenstructure assignment, in IEEE Conference Emerging Technologies and Factory Automation, 2006 Google Scholar
  2. 6.
    P. Bendotti, J.C. Morris, Robust hover control for a model helicopter, in Proceedings of the American Control Conference, 1995 Google Scholar
  3. 11.
    P. Castillo, R. Lozano, A.E. Dzul, Modelling and Control of Mini-Flying Machines (Springer, Berlin, 2005) Google Scholar
  4. 12.
    P.C. Chandrasekharan, Robust Control of Linear Dynamical Systems (Academic Press, San Diego, 1996) Google Scholar
  5. 14.
    A.J. Prasad, J.V.R. Corban, J.E. Calise, Implementation of adaptive nonlinear control for flight test on an unmanned helicopter, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, December 1998, pp. 3641–3646 Google Scholar
  6. 15.
    J.E. Corban, A.J. Calise, J.V.R. Prasad, J. Hur, N. Kim, Flight evaluation of adaptive high-bandwidth control methods for unmanned helicopters, in AIAA Guidance, Navigation, and Control Conference, 2003 Google Scholar
  7. 17.
    J.C. Doyle, B.A. Francis, A. Tannenbaum, Feedback Control Theory (Macmillan, New York, 1992) Google Scholar
  8. 21.
    I. Fantoni, R. Lozano, Nonlinear Control for Underactuated Mechanical Systems (Springer, New York, 2001) Google Scholar
  9. 26.
    J. Gadewadikar, F. Lewis, K. Subbarao, B. Chen, \(\mathcal{H}_{\infty}\) static output-feedback control for rotorcraft. Journal of Intelligent and Robotic Systems, 54, 629–646 (2008) CrossRefGoogle Scholar
  10. 27.
    J. Gadewadikar, F. Lewis, K. Subbarao, B. Chen, Structured \(\mathcal{H}_{\infty}\) command and control-loop design for unmanned helicopters. Journal of Guidance, Control and Dynamics 31, 1093–1102 (2008) CrossRefGoogle Scholar
  11. 28.
    J. Gadewadikar, F.L. Lewis, K. Subbarao, K. Peng, B.M. Chen, \(\mathcal{H}_{\infty}\) static output-feedback control for rotorcraft, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006 Google Scholar
  12. 32.
    N. Guenard, T. Hamel, V. Moreau, Dynamic modeling and intuitive control strategy for an “X4-flyer”, in International Conference on Control and Automation, 2005, pp. 141–146 Google Scholar
  13. 33.
    T. Hamel, R. Mahony, R. Lozano, J. Ostrowski, Dynamic modeling and configuration stabilization for an X4-flyer, in 15th Triennial World Congress of IFAC, 2002 Google Scholar
  14. 34.
    N. Hovakimyan, N. Kim, A.J. Calise, J.V.R. Prasad, N. Corban, Adaptive output feedback for high-bandwidth control of an unmanned helicopter, in AIAA Guidance, Navigation, and Control Conference, 2001 Google Scholar
  15. 37.
    A. Isidori, L. Marconi, A. Serrani, Robust nonlinear motion control of a helicopter. IEEE Transactions on Automatic Control 48, 413–426 (2003) MathSciNetCrossRefGoogle Scholar
  16. 38.
    E.N. Johnson, S.K. Kannan, Adaptive flight control for an autonomous unmanned helicopter, in AIAA Guidance, Navigation and Control Conference, 2002 Google Scholar
  17. 39.
    E.N. Johnson, S.K. Kannan, Adaptive trajectory control for autonomous helicopters. Journal of Guidance, Control and Dynamics 28, 524–538 (2005) CrossRefGoogle Scholar
  18. 40.
    W. Johnson, Helicopter Theory (Princeton University Press, Princeton, 1980) Google Scholar
  19. 42.
    F. Kendoul, D. Lara, I. Fantoni-Coichot, R. Lozano, Real-time nonlinear embedded control for an autonomous quadrotor helicopter. Journal of Guidance, Control and Dynamics 30, 1049–1061 (2007) CrossRefGoogle Scholar
  20. 43.
    H.K. Khalil, Nonlinear Systems (Prentice Hall, New York, 2002) zbMATHGoogle Scholar
  21. 44.
    H.J. Kim, D.H. Shim, A flight control system for aerial robots: algorithms and experiments. Control Engineering Practice 11, 1389–1400 (2003) CrossRefGoogle Scholar
  22. 45.
    N. Kim, A.J. Calise, N. Hovakimyan, J.V.R. Prasad, E. Corban, Adaptive output feedback for high-bandwidth flight control. Journal of Guidance, Control and Dynamics 25, 993–1002 (2002) CrossRefGoogle Scholar
  23. 47.
    T.J. Koo, S. Sastry, Output tracking control design of a helicopter model based on approximate linearization, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3635–3640 Google Scholar
  24. 48.
    T.J. Koo, S. Sastry, Differential flatness based full authority helicopter control design, in Proceedings of the 38th IEEE Conference on Decision and Control, 1999 Google Scholar
  25. 49.
    M. Krstic, I. Kanellakopoulos, P.V. Kokotovic, Nonlinear and Adaptive Control Design (Wiley–Interscience, New York, 1995) Google Scholar
  26. 50.
    R. Kureemun, D.J. Walker, B. Manimala, M. Voskuijl, Helicopter flight control law design using \(\mathcal{H}_{\infty}\) techniques, in IEEE Conference on Decision and Control, 2005 Google Scholar
  27. 51.
    M. La Civita, Integrated modeling and robust control for full envelope flight of robotic helicopters, PhD thesis, Carnegie Mellon University, 2002 Google Scholar
  28. 52.
    M. La Civita, W.C. Messner, T. Kanade, Modeling of small-scale helicopters with integrated first-principles and system identification techniques, in Proceedings of the 58th Forum of the American Helicopter Society, vol. 2, 2002, pp. 2505–2516 Google Scholar
  29. 53.
    M. La Civita, G. Papageorgiou, W. Messner, T. Kanade, Design and flight testing of a high-bandwidth \(\mathcal{H}_{\infty}\) loop shaping controller for a robotic helicopter, in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2002 Google Scholar
  30. 54.
    M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Integrated modeling and robust control for full-envelope flight of robotic helicopters, in Proceedings of IEEE International Conference on Robotics and Automation, 2003, pp. 552–557 Google Scholar
  31. 55.
    M. La Civita, G. Papageorgiou, W.C. Messner, T. Kanade, Design and flight testing of an \(\mathcal{H}_{\infty}\) controller for a robotic helicopter. Journal of Guidance, Control, and Dynamics, 485–494 (2006) Google Scholar
  32. 56.
    E.H. Lee, H. Shim, L. Park, K. Lee, Design of hovering attitude controller for a model helicopter, in Proceedings of Society of Instrument and Control Engineers, 1993, pp. 1385–1390 Google Scholar
  33. 64.
    R. Mahony, T. Hamel, Robust trajectory tracking for a scale model autonomous helicopter. International Journal of Robust and Nonlinear Control 14(12), 1035–1059 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  34. 65.
    R. Mahony, T. Hamel, A. Dzul, Hover control via Lyapunov control for an autonomous model helicopter, in Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, 1999, pp. 3490–3495 Google Scholar
  35. 66.
    L. Marconi, R. Naldi, Robust full degree-of-freedom tracking control of a helicopter. Automatica 43, 1909–1920 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  36. 67.
    L. Marconi, R. Naldi, Aggressive control of helicopters in presence of parametric and dynamical uncertainties. Mechatronics 1, 381–389 (2008) CrossRefGoogle Scholar
  37. 68.
    D. McFarlane, K. Glover, A loop-shaping design procedure using \(\mathcal{H}_{\infty}\) synthesis. IEEE Transactions on Automatic Control 37, 759–769 (1992) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 70.
    B. Mettler, Identification Modeling and Characteristics of Miniature Rotorcraft (Kluwer Academic Publishers, Norwell, 2003) CrossRefGoogle Scholar
  39. 72.
    B. Mettler, M.B. Tischler, T. Kanade, System identification of small-size unmanned helicopter dynamics, in Presented at the American Helicopter Society 55th Forum, May 1999 Google Scholar
  40. 78.
    H. Ozbay, Introduction to Feedback Control Theory (CRC Press, Boca Raton, 1999) Google Scholar
  41. 79.
    G.D. Padfield, Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling, AIAA Education Series (Blackwell Science, Oxford, 1996) Google Scholar
  42. 80.
    G. Papageorgiou, K. Glover, \(\mathcal{H}_{\infty}\) loop-shaping: Why is it a sensible procedure for designing robust flight controllers, in AIAA Conference on Guidance, Navigation and Control, 1999 Google Scholar
  43. 82.
    S. Pieper, J.K. Baillie, K.R. Goheen, Linear-quadratic optimal model-following control of a helicopter in hover, in American Control Conference, 1994 Google Scholar
  44. 83.
    E. Prempain, I. Postlethwaite, Static \(\mathcal{H}_{\infty}\) loop shaping control of a fly-by-wire helicopter. Automatica 41, 1517–1528 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  45. 84.
    R.W. Prouty, Helicopter Performance, Stability and Control (Krieger Publishing Company, Melbourne, 1995) Google Scholar
  46. 87.
    J.S. Shamma, M. Athans, Analysis of gain scheduled control for nonlinear plants. IEEE Transactions on Automatic Control 35, 898–907 (1990) MathSciNetzbMATHCrossRefGoogle Scholar
  47. 88.
    H. Shim, T.J. Koo, F. Hoffmann, S. Sastry, A comprehensive study of control design for an autonomous helicopter, in Proceedings of the 37th IEEE Conference on Decision and Control, vol. 4, 1998, pp. 3653–3658 Google Scholar
  48. 92.
    S. Skogestad, I. Postlethwaite, Multivariable Feedback Control (Wiley, New York, 1996) Google Scholar
  49. 97.
    X.D. Sun, T. Clarke, Application of hybrid \(\mu/\mathcal{H}_{\infty}\) control to modern helicopters, in International Conference on Control, 1994 Google Scholar
  50. 108.
    D.J. Walker, I. Postlethwaite, Advanced helicopter flight control using two-degree-of-freedom \(\mathcal{H}_{\infty}\) optimization. Journal of Guidance, Control and Dynamics 19, 461–468 (1996) zbMATHCrossRefGoogle Scholar
  51. 109.
    M.F. Weilenmann, U. Christen, H.P. Geering, Robust helicopter position control at hover, in American Control Conference, 1999 Google Scholar
  52. 110.
    M.F. Weilenmann, P. Hans, A test bench for rotorcraft hover control, in AIAA Guidance, Navigation and Control Conference, 1993, pp. 1371–1382 Google Scholar
  53. 113.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice Hall, New York, 1996) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Electrical and Computer Engineering, and, Department of Computer Science, School of Engineering and Computer ScienceUniversity of DenverDenverUSA

Personalised recommendations