Skip to main content

Some Recent Studies on Cracked Rotors

  • Conference paper
  • First Online:
IUTAM Symposium on Emerging Trends in Rotor Dynamics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 1011))

Abstract

An important rotor fault, which can lead to catastrophic failure if undetected, is fatigue crack in the shaft. Cracked rotating shafts have been the subject of studies and investigations for more than four decades, with some review papers published over this period. The aim of this paper is to discuss very recent developments of the research on cracked rotors, including the inverse problem of the identification of cracks in rotating machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wauer, J.: Dynamics of cracked rotors: Literature survey. Appl. Mech. Rev. 43, 13–17 (1990)

    Google Scholar 

  2. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160, 313–332 (1993)

    Article  MATH  Google Scholar 

  3. Dimarogonas, A.D.: Vibration of cracked structures: A state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)

    Article  Google Scholar 

  4. Sabnavis, G., Kirk, R.G., Kasarda, M., Quinn, D.: Cracked shaft detection and diagnostics: a literature review. Shock Vib. Dig. 36, 287–296 (2004)

    Article  Google Scholar 

  5. Bachschmid, N., Pennacchi, P.: Crack effects in rotordynamics. Editorial, Mech. Syst. Signal Process. 22, 761–762 (2008)

    Article  Google Scholar 

  6. Papadopoulos, C.A.: The strain energy release approach for modelling cracks in rotors: A state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008)

    Article  Google Scholar 

  7. Gasch, R.: Dynamic behaviour of the Laval rotor with a transverse crack. Mech. Syst. Signal Process. 22, 790–804 (2008)

    Article  Google Scholar 

  8. Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor. Mech. Syst. Signal Process 22, 805–817 (2008)

    Article  Google Scholar 

  9. Stoisser, C.M., Audebert, S.: A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22, 818–844 (2008)

    Article  Google Scholar 

  10. Sekhar, A.S.: Multiple cracks effects and identification. Mech. Syst. Signal Process. 22, 845–878 (2008)

    Article  Google Scholar 

  11. Bachschmid, N., Pennacchi, P., Tanzi, E.: Some remarks on breathing mechanism, on non-linear effects on slant and helicoidal cracks. Mech. Syst. Signal Process. 22, 879–904 (2008)

    Article  Google Scholar 

  12. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008)

    Article  Google Scholar 

  13. Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with breathing crack. J. Sound Vib. 155, 273–290 (1992)

    Article  MATH  Google Scholar 

  14. Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269(1–2), 33–60 (2004)

    Article  Google Scholar 

  15. Darpe, A.K., Gupta, K., Chawla, A.: Dynamics of bowed rotor with a transverse surface crack. J. Sound Vib. 296, 888–907 (2006)

    Article  Google Scholar 

  16. Wu, X., Friswell, M.I., Sawicki, J.T., Baaklini, G.Y.: Finite element analysis of coupled lateral and torsional vibrations of a rotor with multiple cracks. In: Proceedings of ASME Turbo Expo 2005 Gas Turbine Technology: Focus for the Future, vol. 4, pp. 841–850. Reno (NV), 6–9 June 2005

    Google Scholar 

  17. Chasalevris, A.C., Papadopoulos, C.A.: Identification of multiple cracks in beams under bending. Mech. Syst. Signal Process. 20(7), 1631–1673 (2006)

    Article  Google Scholar 

  18. Vare, C., Andrieux, S.: Modeling of a cracked beam section under bending. In: 18th International Conference on Structural Mechanics in Reactor-Technology (SMIRT 18), pp. 281–290. Beijing, China, 7–12 August— 2005

    Google Scholar 

  19. Andrier, B., Garbay, E., Hasnaoui, F., Massin, P., Verrier, P.: Investigation of helix-shaped and transverse crack propagation in rotor shafts based on disk shrunk technology. Nucl. Eng. Des. 236, 333–349 (2006)

    Article  Google Scholar 

  20. Shin, C.S., Cai, C.Q.: Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. Int. J. Fract. 129, 239–264 (2004)

    Article  MATH  Google Scholar 

  21. Bachschmid, N., Tanzi, E.: Deflections and strains in cracked shafts due to rotating loads: a numerical and experimental analysis. Int. J. Rotat. Mach. 10, 283–291 (2004)

    Article  Google Scholar 

  22. Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a rotating shaft. J. Sound Vib. 318, 279–295 (2008)

    Article  Google Scholar 

  23. Jun, O.S., Gadala, M.S.: Dynamic behavior analysis of a cracked rotor. J. Sound Vib. 309, 210–245 (2008)

    Article  Google Scholar 

  24. Ma, J.X., Xue, J.J., Yang, S.J., He, Z.J.: A study of the construction and application of a Daubechies wavelet-based beam element. Finite Ele. Anal. Des. 39(10), 965–975 (2003)

    Article  Google Scholar 

  25. Chen, X.F., Yang, S.J., Ma, J.X., He, Z.J.: The construction of wavelet finite element and its applications. Finite Ele. Anal.Des. 40(5–6), 541–554 (2004)

    Article  Google Scholar 

  26. Chen, X.F., He, Z.J., Xiang, J.W., et al.: A dynamic multiscale lifting computation method using Daubechies wavelet. J. Comput. Appl. Math. 188(2), 228–245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Xiang, J.W., Chen, X.F., He, Z.J., Dong, H.B.: The construction of 1D wavelet finite elements for structural analysis. Comput. Mech. 40(2), 325–339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Xiang, J.W., Chen, X.F., He, Y.M., He, Z.J.: The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval. Finite Ele. Anal. Des. 42, 1269–1280 (2006)

    Article  Google Scholar 

  29. Xiang, J.W., He, Z.J., Chen, X.F.: The construction of wavelet-based truncated conical shell element using B-spline wavelet on the interval. Acta Mec. Solida Sin. 19(4), 316–326 (2006)

    Google Scholar 

  30. Li, B., Chen, X.F., Ma, J.X., He, Z.J.: Detection of crack location and size in structures using wavelet finite element methods. J. Sound Vib. 285, 767–782 (2005)

    Article  Google Scholar 

  31. Chen, X.F., He, Z.J., Xiang, J.W.: Experiments on crack identification in cantilever beams. Exp. Mech. 45(3), 295–300 (2005)

    Article  Google Scholar 

  32. Xiang, J.W., Chen, X.F., Li, B., He, Y.M., He, Z.J.: Identification of crack in a beam based on the finite element method of a B-spline wavelet on the interval. J. Sound Vib. 296, 1046–1052 (2006)

    Article  Google Scholar 

  33. Xiang, J., Chen, X., Mo, Q., He, Z.: Identification of crack in a rotor system based on wavelet finite element method. Finite Ele. Anal. Des. 43, 1068–1081 (2007)

    Article  Google Scholar 

  34. Jun, O.S.: Influence coefficients on rotor having thick shaft elements and resilient bearings. J. Sound Vib. 272, 657–673 (2004)

    Article  Google Scholar 

  35. Mohammad, D., Hosein, B.: Discrete dynamic modelling of shafts with transverse cracks using bond graph. In: Proceedings of DETC.03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago, Sharif University of Technology, Illinois, USA, 2–6 September 2003

    Google Scholar 

  36. Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a cracked shaft. J. Vib., Acoust., Stress Reliab. Des. 110(1), 1–8 (1988)

    Google Scholar 

  37. Gounaris, G.D., Papadopoulos, C.A.: Crack identification in rotating shafts by coupled response measurements. Eng. Fract. Mech. 69(3), 339–352 (2002)

    Article  Google Scholar 

  38. Chasalevris, A.C., Papadopoulos, C.A.: Coupled horizontal and vertical vibrations of a stationary shaft with two cracks. J. Sound Vib. 309, 507–528 (2008)

    Article  Google Scholar 

  39. Chasalevris, A.C., Papadopoulos, C.A.: A continuous model approach for cross-coupled bending vibrations of a rotor-bearing system with a transverse breathing crack. Mech. Mach. Theor. (2008). doi: 10.1016/j.mechmachtheory.2008.09.001

    Google Scholar 

  40. Alvandia, A., Cremona, C.: Assessment of vibration-based damage identification techniques. J. Sound Vib. 292, 179–202 (2006)

    Article  Google Scholar 

  41. Faverjon, B., Sinou, J.J.: Robust damage assessment of multiple cracks based on the frequency response function and the constitutive relation error updating method. J. Sound Vib. 312, 821–837 (2008)

    Article  Google Scholar 

  42. Kisa, M., Gurel, M.A.: Free vibration analysis of uniform and stepped cracked beams with circular cross sections. Int. J. Eng. Sci. 45, 364–380 (2007)

    Article  Google Scholar 

  43. Mazanoglu, K., Yesilyurt, I., Sabuncu, M.: Vibration analysis of multiple-cracked non-uniform beams. J. Sound Vib. 320(4–5), 977–989 (2009)

    Article  Google Scholar 

  44. Yang, X.F., Swamidas, A.S.J., Seshadri, R.: Crack identification in vibrating beams using the energy method. J. Sound Vib. 244(2), 339–357 (2001)

    Article  Google Scholar 

  45. Sekhar, A.S.: Identification of unbalance and crack acting simultaneously in a rotor system: modal expansion versus reduced basis dynamic expansion. J. Vib. Control 11(9), 1125–1145 (2005)

    Article  MATH  Google Scholar 

  46. Sinou, J.J.: Detection of cracks in rotor based on the 2x and 3x super-harmonic frequency components and the crack-unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13, 2024–2040 (2008)

    Article  Google Scholar 

  47. Patel, T.H., Darpe, A.K.: Vibration response of a cracked rotor in presence of rotor-stator rub. J. Sound Vib. 317, 841–865 (2008)

    Article  Google Scholar 

  48. Sekhar, A.S., Prabhakar, S., Mohanty, A.R.: Vibrations of cracked rotor systems: transverse crack vs. slant crack. J. Sound Vib. 279, 1203–1217 (2005)

    Article  Google Scholar 

  49. Darpe, A.K.: Dynamics of a Jeffcott rotor with slant crack. J. Sound Vib. 303(1–2), 1–28 (2007)

    Article  Google Scholar 

  50. Zhou, T., Sun, Z., Xu, J., Han, W.: Experimental analysis of cracked rotor. J. Dyn. Syst., Meas. Control 127, 313–320 (2005)

    Article  Google Scholar 

  51. Pu, J., Chen, J., Zou, J., Zhong, P.: The research on nonlinear characteristics of cracked rotor and reconstruction of crack forces. Proc. Inst. Mech. Eng., J. Mech. Eng. Sci. 216, 1099–1108 (2002)

    Article  Google Scholar 

  52. Qin, W., Meng, G., Zhang, T.: The swing vibration, transverse oscillation of cracked rotor and the intermittence chaos. J. Sound Vib. 259, 571–583 (2003)

    Article  Google Scholar 

  53. Qin, W., Meng, G., Xingmin, R.: Grazing bifurcations in the response of cracked Jeffcott rotor. Nonlinear Dyn. 35, 147–157 (2004)

    Article  MATH  Google Scholar 

  54. Yiming, F., Yufang, Y., Shijian, Z.: Analysis of the chaotic motion for the rotor system with transverse crack. Acta Mec. Solida Sin. 16, 74–80 (2003)

    Google Scholar 

  55. Pu, J., Chen, J., Zou, J., Zhong, P.: Quasi-periodic vibration of cracked rotor on flexible bearings. J. Sound Vib. 251, 875–890 (2003)

    Article  Google Scholar 

  56. Bovsunovsky, A.P., Surace, C.: Considerations regarding super harmonic vibrations of a cracked beam and the variation in damping caused by the presence of the crack. J. Sound Vib. 288, 865–886 (2005)

    Article  Google Scholar 

  57. Peng, Z.L., Lang, Z.Q., Chu, F.L.: Numerical analysis of cracked beams using nonlinear output frequency response functions. Comput. Struct. 86, 1809–1818 (2008)

    Article  Google Scholar 

  58. Dong, H.B., Chen, X.F., Li, B., Qi, K.Y., He, Z.J.: Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model. Mech. Syst. Signal Process. 23, 869–883 (2009)

    Article  Google Scholar 

  59. Lees, A.W., Sinha, J.K., Friswell, M.I.: Model-based identification of rotating machines. Mech. Syst. Signal Process. (2008). doi: 10.1016/j.ymssp.2008.08.008

    Google Scholar 

  60. Pennacchi, P., Bachschmid, N., Vania, A.: A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mech. Syst. Signal Process. 20(8), 2112–2147 (2006)

    Article  Google Scholar 

  61. Loutridis, S., Douka, E., Trochidis, A.: Crack identification in double cracked beams using wavelet analysis. J. Sound Vib. 277, 1025–1039 (2004)

    Article  Google Scholar 

  62. Loutridis, S., Douka, E., Hadjileontiadis, L.J., et al.: A two-dimensional wavelet transform for detection of cracks in plates. Eng. Struct. 27, 1327–1338 (2005)

    Article  Google Scholar 

  63. Zhu, X.Q., Law, S.S.: Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J.Solids Struct. 43, 2299–2317 (2006)

    Article  MATH  Google Scholar 

  64. http://techtransfer.gsfc.nasa.gov/downloads/HHT-DPS-WhitePaper.pdf

  65. Ramesh Babu, T., Srikanth, S., Sekhar, A.S.: Hilbert–Huang transform for detection and monitoring of crack in a transient rotor. Mech. Syst. Signal Process. 22(4), 905–914 (2008)

    Google Scholar 

  66. Guo, D., Peng, Z.K.: Vibration analysis of a cracked rotor using Hilbert-Huang transform. Mech. Syst. Signal Process. 21(8), 3030–3041 (2007)

    Article  Google Scholar 

  67. Ramesh Babu, T., Sekhar, A.S.: Detection of two cracks in a rotor-bearing system using amplitude deviation curve. J. Sound Vib. 314, 457–464 (2008)

    Article  Google Scholar 

  68. Faverjon, B., Sinou, J.J.: Identification of an open crack in a beam using an a posteriori error estimator of the frequency response function with noisy measurements. Eur. J. Mech. A/Solids 28, 75–85 (2009)

    Article  MATH  Google Scholar 

  69. Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A., Dentsoras, A.J.: Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements. Comp. Struct. 86, 1318–1338 (2008)

    Article  Google Scholar 

  70. Xiang, J., Zhong, Y., Chen, X., He, Z.: Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm. International Journal of Solids and Structures 45: 4782–4795 (2008)

    Article  MATH  Google Scholar 

  71. Bachschmid N, Pennacchi P, Tanzi E, Verrier P, Hasnaoui F, Aabadi K (2004) Crack detectability in vertical axis cooling pumps during operation. Int. J. Rotat. Mach. 10, 121–133

    Article  Google Scholar 

  72. Pennacchi, P., Vania, A.: Diagnostics of a crack in a load coupling of a gas turbine using the machine model and analysis of the shaft vibrations. Mech. Syst. Signal Process. 22, 1157–1178 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sekhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Sekhar, A.S. (2011). Some Recent Studies on Cracked Rotors. In: Gupta, K. (eds) IUTAM Symposium on Emerging Trends in Rotor Dynamics. IUTAM Bookseries, vol 1011. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0020-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0020-8_41

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0019-2

  • Online ISBN: 978-94-007-0020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics