Some Recent Studies on Cracked Rotors

  • A. S. SekharEmail author
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)


An important rotor fault, which can lead to catastrophic failure if undetected, is fatigue crack in the shaft. Cracked rotating shafts have been the subject of studies and investigations for more than four decades, with some review papers published over this period. The aim of this paper is to discuss very recent developments of the research on cracked rotors, including the inverse problem of the identification of cracks in rotating machinery.


Cracks Shaft Identification 


  1. 1.
    Wauer, J.: Dynamics of cracked rotors: Literature survey. Appl. Mech. Rev. 43, 13–17 (1990)Google Scholar
  2. 2.
    Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160, 313–332 (1993)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dimarogonas, A.D.: Vibration of cracked structures: A state of the art review. Eng. Fract. Mech. 55, 831–857 (1996)CrossRefGoogle Scholar
  4. 4.
    Sabnavis, G., Kirk, R.G., Kasarda, M., Quinn, D.: Cracked shaft detection and diagnostics: a literature review. Shock Vib. Dig. 36, 287–296 (2004)CrossRefGoogle Scholar
  5. 5.
    Bachschmid, N., Pennacchi, P.: Crack effects in rotordynamics. Editorial, Mech. Syst. Signal Process. 22, 761–762 (2008)CrossRefGoogle Scholar
  6. 6.
    Papadopoulos, C.A.: The strain energy release approach for modelling cracks in rotors: A state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008)CrossRefGoogle Scholar
  7. 7.
    Gasch, R.: Dynamic behaviour of the Laval rotor with a transverse crack. Mech. Syst. Signal Process. 22, 790–804 (2008)CrossRefGoogle Scholar
  8. 8.
    Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor. Mech. Syst. Signal Process 22, 805–817 (2008)CrossRefGoogle Scholar
  9. 9.
    Stoisser, C.M., Audebert, S.: A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery. Mech. Syst. Signal Process. 22, 818–844 (2008)CrossRefGoogle Scholar
  10. 10.
    Sekhar, A.S.: Multiple cracks effects and identification. Mech. Syst. Signal Process. 22, 845–878 (2008)CrossRefGoogle Scholar
  11. 11.
    Bachschmid, N., Pennacchi, P., Tanzi, E.: Some remarks on breathing mechanism, on non-linear effects on slant and helicoidal cracks. Mech. Syst. Signal Process. 22, 879–904 (2008)CrossRefGoogle Scholar
  12. 12.
    Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008)CrossRefGoogle Scholar
  13. 13.
    Jun, O.S., Eun, H.J., Earmme, Y.Y., Lee, C.W.: Modelling and vibration analysis of a simple rotor with breathing crack. J. Sound Vib. 155, 273–290 (1992)zbMATHCrossRefGoogle Scholar
  14. 14.
    Darpe, A.K., Gupta, K., Chawla, A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound Vib. 269(1–2), 33–60 (2004)CrossRefGoogle Scholar
  15. 15.
    Darpe, A.K., Gupta, K., Chawla, A.: Dynamics of bowed rotor with a transverse surface crack. J. Sound Vib. 296, 888–907 (2006)CrossRefGoogle Scholar
  16. 16.
    Wu, X., Friswell, M.I., Sawicki, J.T., Baaklini, G.Y.: Finite element analysis of coupled lateral and torsional vibrations of a rotor with multiple cracks. In: Proceedings of ASME Turbo Expo 2005 Gas Turbine Technology: Focus for the Future, vol. 4, pp. 841–850. Reno (NV), 6–9 June 2005Google Scholar
  17. 17.
    Chasalevris, A.C., Papadopoulos, C.A.: Identification of multiple cracks in beams under bending. Mech. Syst. Signal Process. 20(7), 1631–1673 (2006)CrossRefGoogle Scholar
  18. 18.
    Vare, C., Andrieux, S.: Modeling of a cracked beam section under bending. In: 18th International Conference on Structural Mechanics in Reactor-Technology (SMIRT 18), pp. 281–290. Beijing, China, 7–12 August— 2005Google Scholar
  19. 19.
    Andrier, B., Garbay, E., Hasnaoui, F., Massin, P., Verrier, P.: Investigation of helix-shaped and transverse crack propagation in rotor shafts based on disk shrunk technology. Nucl. Eng. Des. 236, 333–349 (2006)CrossRefGoogle Scholar
  20. 20.
    Shin, C.S., Cai, C.Q.: Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. Int. J. Fract. 129, 239–264 (2004)zbMATHCrossRefGoogle Scholar
  21. 21.
    Bachschmid, N., Tanzi, E.: Deflections and strains in cracked shafts due to rotating loads: a numerical and experimental analysis. Int. J. Rotat. Mach. 10, 283–291 (2004)CrossRefGoogle Scholar
  22. 22.
    Georgantzinos, S.K., Anifantis, N.K.: An insight into the breathing mechanism of a crack in a rotating shaft. J. Sound Vib. 318, 279–295 (2008)CrossRefGoogle Scholar
  23. 23.
    Jun, O.S., Gadala, M.S.: Dynamic behavior analysis of a cracked rotor. J. Sound Vib. 309, 210–245 (2008)CrossRefGoogle Scholar
  24. 24.
    Ma, J.X., Xue, J.J., Yang, S.J., He, Z.J.: A study of the construction and application of a Daubechies wavelet-based beam element. Finite Ele. Anal. Des. 39(10), 965–975 (2003)CrossRefGoogle Scholar
  25. 25.
    Chen, X.F., Yang, S.J., Ma, J.X., He, Z.J.: The construction of wavelet finite element and its applications. Finite Ele. Anal.Des. 40(5–6), 541–554 (2004)CrossRefGoogle Scholar
  26. 26.
    Chen, X.F., He, Z.J., Xiang, J.W., et al.: A dynamic multiscale lifting computation method using Daubechies wavelet. J. Comput. Appl. Math. 188(2), 228–245 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Xiang, J.W., Chen, X.F., He, Z.J., Dong, H.B.: The construction of 1D wavelet finite elements for structural analysis. Comput. Mech. 40(2), 325–339 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Xiang, J.W., Chen, X.F., He, Y.M., He, Z.J.: The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval. Finite Ele. Anal. Des. 42, 1269–1280 (2006)CrossRefGoogle Scholar
  29. 29.
    Xiang, J.W., He, Z.J., Chen, X.F.: The construction of wavelet-based truncated conical shell element using B-spline wavelet on the interval. Acta Mec. Solida Sin. 19(4), 316–326 (2006)Google Scholar
  30. 30.
    Li, B., Chen, X.F., Ma, J.X., He, Z.J.: Detection of crack location and size in structures using wavelet finite element methods. J. Sound Vib. 285, 767–782 (2005)CrossRefGoogle Scholar
  31. 31.
    Chen, X.F., He, Z.J., Xiang, J.W.: Experiments on crack identification in cantilever beams. Exp. Mech. 45(3), 295–300 (2005)CrossRefGoogle Scholar
  32. 32.
    Xiang, J.W., Chen, X.F., Li, B., He, Y.M., He, Z.J.: Identification of crack in a beam based on the finite element method of a B-spline wavelet on the interval. J. Sound Vib. 296, 1046–1052 (2006)CrossRefGoogle Scholar
  33. 33.
    Xiang, J., Chen, X., Mo, Q., He, Z.: Identification of crack in a rotor system based on wavelet finite element method. Finite Ele. Anal. Des. 43, 1068–1081 (2007)CrossRefGoogle Scholar
  34. 34.
    Jun, O.S.: Influence coefficients on rotor having thick shaft elements and resilient bearings. J. Sound Vib. 272, 657–673 (2004)CrossRefGoogle Scholar
  35. 35.
    Mohammad, D., Hosein, B.: Discrete dynamic modelling of shafts with transverse cracks using bond graph. In: Proceedings of DETC.03 ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference Chicago, Sharif University of Technology, Illinois, USA, 2–6 September 2003Google Scholar
  36. 36.
    Papadopoulos, C.A., Dimarogonas, A.D.: Coupled longitudinal and bending vibrations of a cracked shaft. J. Vib., Acoust., Stress Reliab. Des. 110(1), 1–8 (1988)Google Scholar
  37. 37.
    Gounaris, G.D., Papadopoulos, C.A.: Crack identification in rotating shafts by coupled response measurements. Eng. Fract. Mech. 69(3), 339–352 (2002)CrossRefGoogle Scholar
  38. 38.
    Chasalevris, A.C., Papadopoulos, C.A.: Coupled horizontal and vertical vibrations of a stationary shaft with two cracks. J. Sound Vib. 309, 507–528 (2008)CrossRefGoogle Scholar
  39. 39.
    Chasalevris, A.C., Papadopoulos, C.A.: A continuous model approach for cross-coupled bending vibrations of a rotor-bearing system with a transverse breathing crack. Mech. Mach. Theor. (2008). doi: 10.1016/j.mechmachtheory.2008.09.001Google Scholar
  40. 40.
    Alvandia, A., Cremona, C.: Assessment of vibration-based damage identification techniques. J. Sound Vib. 292, 179–202 (2006)CrossRefGoogle Scholar
  41. 41.
    Faverjon, B., Sinou, J.J.: Robust damage assessment of multiple cracks based on the frequency response function and the constitutive relation error updating method. J. Sound Vib. 312, 821–837 (2008)CrossRefGoogle Scholar
  42. 42.
    Kisa, M., Gurel, M.A.: Free vibration analysis of uniform and stepped cracked beams with circular cross sections. Int. J. Eng. Sci. 45, 364–380 (2007)CrossRefGoogle Scholar
  43. 43.
    Mazanoglu, K., Yesilyurt, I., Sabuncu, M.: Vibration analysis of multiple-cracked non-uniform beams. J. Sound Vib. 320(4–5), 977–989 (2009)CrossRefGoogle Scholar
  44. 44.
    Yang, X.F., Swamidas, A.S.J., Seshadri, R.: Crack identification in vibrating beams using the energy method. J. Sound Vib. 244(2), 339–357 (2001)CrossRefGoogle Scholar
  45. 45.
    Sekhar, A.S.: Identification of unbalance and crack acting simultaneously in a rotor system: modal expansion versus reduced basis dynamic expansion. J. Vib. Control 11(9), 1125–1145 (2005)zbMATHCrossRefGoogle Scholar
  46. 46.
    Sinou, J.J.: Detection of cracks in rotor based on the 2x and 3x super-harmonic frequency components and the crack-unbalance interactions. Commun. Nonlinear Sci. Numer. Simul. 13, 2024–2040 (2008)CrossRefGoogle Scholar
  47. 47.
    Patel, T.H., Darpe, A.K.: Vibration response of a cracked rotor in presence of rotor-stator rub. J. Sound Vib. 317, 841–865 (2008)CrossRefGoogle Scholar
  48. 48.
    Sekhar, A.S., Prabhakar, S., Mohanty, A.R.: Vibrations of cracked rotor systems: transverse crack vs. slant crack. J. Sound Vib. 279, 1203–1217 (2005)CrossRefGoogle Scholar
  49. 49.
    Darpe, A.K.: Dynamics of a Jeffcott rotor with slant crack. J. Sound Vib. 303(1–2), 1–28 (2007)CrossRefGoogle Scholar
  50. 50.
    Zhou, T., Sun, Z., Xu, J., Han, W.: Experimental analysis of cracked rotor. J. Dyn. Syst., Meas. Control 127, 313–320 (2005)CrossRefGoogle Scholar
  51. 51.
    Pu, J., Chen, J., Zou, J., Zhong, P.: The research on nonlinear characteristics of cracked rotor and reconstruction of crack forces. Proc. Inst. Mech. Eng., J. Mech. Eng. Sci. 216, 1099–1108 (2002)CrossRefGoogle Scholar
  52. 52.
    Qin, W., Meng, G., Zhang, T.: The swing vibration, transverse oscillation of cracked rotor and the intermittence chaos. J. Sound Vib. 259, 571–583 (2003)CrossRefGoogle Scholar
  53. 53.
    Qin, W., Meng, G., Xingmin, R.: Grazing bifurcations in the response of cracked Jeffcott rotor. Nonlinear Dyn. 35, 147–157 (2004)zbMATHCrossRefGoogle Scholar
  54. 54.
    Yiming, F., Yufang, Y., Shijian, Z.: Analysis of the chaotic motion for the rotor system with transverse crack. Acta Mec. Solida Sin. 16, 74–80 (2003)Google Scholar
  55. 55.
    Pu, J., Chen, J., Zou, J., Zhong, P.: Quasi-periodic vibration of cracked rotor on flexible bearings. J. Sound Vib. 251, 875–890 (2003)CrossRefGoogle Scholar
  56. 56.
    Bovsunovsky, A.P., Surace, C.: Considerations regarding super harmonic vibrations of a cracked beam and the variation in damping caused by the presence of the crack. J. Sound Vib. 288, 865–886 (2005)CrossRefGoogle Scholar
  57. 57.
    Peng, Z.L., Lang, Z.Q., Chu, F.L.: Numerical analysis of cracked beams using nonlinear output frequency response functions. Comput. Struct. 86, 1809–1818 (2008)CrossRefGoogle Scholar
  58. 58.
    Dong, H.B., Chen, X.F., Li, B., Qi, K.Y., He, Z.J.: Rotor crack detection based on high-precision modal parameter identification method and wavelet finite element model. Mech. Syst. Signal Process. 23, 869–883 (2009)CrossRefGoogle Scholar
  59. 59.
    Lees, A.W., Sinha, J.K., Friswell, M.I.: Model-based identification of rotating machines. Mech. Syst. Signal Process. (2008). doi: 10.1016/j.ymssp.2008.08.008Google Scholar
  60. 60.
    Pennacchi, P., Bachschmid, N., Vania, A.: A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mech. Syst. Signal Process. 20(8), 2112–2147 (2006)CrossRefGoogle Scholar
  61. 61.
    Loutridis, S., Douka, E., Trochidis, A.: Crack identification in double cracked beams using wavelet analysis. J. Sound Vib. 277, 1025–1039 (2004)CrossRefGoogle Scholar
  62. 62.
    Loutridis, S., Douka, E., Hadjileontiadis, L.J., et al.: A two-dimensional wavelet transform for detection of cracks in plates. Eng. Struct. 27, 1327–1338 (2005)CrossRefGoogle Scholar
  63. 63.
    Zhu, X.Q., Law, S.S.: Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J.Solids Struct. 43, 2299–2317 (2006)zbMATHCrossRefGoogle Scholar
  64. 64.
  65. 65.
    Ramesh Babu, T., Srikanth, S., Sekhar, A.S.: Hilbert–Huang transform for detection and monitoring of crack in a transient rotor. Mech. Syst. Signal Process. 22(4), 905–914 (2008)Google Scholar
  66. 66.
    Guo, D., Peng, Z.K.: Vibration analysis of a cracked rotor using Hilbert-Huang transform. Mech. Syst. Signal Process. 21(8), 3030–3041 (2007)CrossRefGoogle Scholar
  67. 67.
    Ramesh Babu, T., Sekhar, A.S.: Detection of two cracks in a rotor-bearing system using amplitude deviation curve. J. Sound Vib. 314, 457–464 (2008)CrossRefGoogle Scholar
  68. 68.
    Faverjon, B., Sinou, J.J.: Identification of an open crack in a beam using an a posteriori error estimator of the frequency response function with noisy measurements. Eur. J. Mech. A/Solids 28, 75–85 (2009)zbMATHCrossRefGoogle Scholar
  69. 69.
    Saridakis, K.M., Chasalevris, A.C., Papadopoulos, C.A., Dentsoras, A.J.: Applying neural networks, genetic algorithms and fuzzy logic for the identification of cracks in shafts by using coupled response measurements. Comp. Struct. 86, 1318–1338 (2008)CrossRefGoogle Scholar
  70. 70.
    Xiang, J., Zhong, Y., Chen, X., He, Z.: Crack detection in a shaft by combination of wavelet-based elements and genetic algorithm. International Journal of Solids and Structures 45: 4782–4795 (2008)zbMATHCrossRefGoogle Scholar
  71. 71.
    Bachschmid N, Pennacchi P, Tanzi E, Verrier P, Hasnaoui F, Aabadi K (2004) Crack detectability in vertical axis cooling pumps during operation. Int. J. Rotat. Mach. 10, 121–133CrossRefGoogle Scholar
  72. 72.
    Pennacchi, P., Vania, A.: Diagnostics of a crack in a load coupling of a gas turbine using the machine model and analysis of the shaft vibrations. Mech. Syst. Signal Process. 22, 1157–1178 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyChennaiIndia

Personalised recommendations