Advertisement

Fault Identification in Industrial Rotating Machinery: Theory and Applications

  • P. PennacchiEmail author
  • A. Vania
  • N. Bachschmid
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)

Abstract

Fault identification plays a fundamental role in reducing maintenance costs and off-line time of industrial rotating machinery. In the past years the authors developed methods for fault identification of rotating machines. This paper summarizes this experience and introduces the necessary theory in the first part. A model based method in the frequency domain is briefly described and identification algorithms are presented, including also robust estimate. The last section of the paper is devoted to the presentation of some case histories of industrial machines, affected by common faults like unbalances, misalignment, rotor-to-stator rub and bow.

Keywords

Fault identification Model based methods Rotor dynamics Unbalance Misalignment Rotor-to-stator rub Bow 

References

  1. 1.
    Platz, R., Markert, R., Seidler, M.: Validation of online diagnostics of malfunctions in rotor systems. In: Proceedings of IMechE-7th Int. Conf. on Vibrations in Rotating Machinery, pp. 581–590. University of Nottingham, UK, 12–14 Sept.2000Google Scholar
  2. 2.
    Pennacchi, P., Bachschmid, N., Vania, A., et al.: Use of modal representation for the supporting structure in model based fault identification of large rotating machinery: part 1 – theoretical remarks. Mech. Syst. Signal Process. 20, 662–681 (2006)CrossRefGoogle Scholar
  3. 3.
    Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering. John Wiley & Sons Inc, Chichester, England (1998)Google Scholar
  4. 4.
    Someya, T.: Journal-Bearing Databook. Springer-Verlag, Berlin, Germany (1989)Google Scholar
  5. 5.
    Konishi, T., Allaire, P., Untaroiu, C.: Modal analysis of a large turbine-generator system with foundation effects. In: IFToMM-6th International Conference on Rotor Dynamics, pp. 846–853. Sydney, Australia, September–October 2002Google Scholar
  6. 6.
    Smart, M., Friswell, M.I., Lees, A.W., et al.: Estimating turbogenerator foundation parameters. Proc. Instn. Mech. Engrs. C212, 635–665 (1998)Google Scholar
  7. 7.
    Kang, Y., Chang, Y.-P., Tsai, J.-W., et al.: An investigation in stiffness effects on dynamics of rotor – bearing-foundation systems. J. Sound Vib. 231, 343–374 (2001)CrossRefGoogle Scholar
  8. 8.
    Pennacchi, P., Bachschmid, N., Vania, A., et al.: Use of modal representation for the supporting structure in model based fault identification of large rotating machinery: part 2 – application to a real machine. Mech. Syst. Signal Process. 20, 682–701 (2006)CrossRefGoogle Scholar
  9. 9.
    Bachschmid, N., Pennacchi, P., Vania, A.: Identification of multiple faults in rotor systems. J. Sound Vib. 254, 327–366 (2002)CrossRefGoogle Scholar
  10. 10.
    Huber, P.J.: Robust Statistics. John Wiley, New York (1981)zbMATHCrossRefGoogle Scholar
  11. 11.
    Bachschmid, N., Pennacchi, P.: Accuracy of fault detection in real rotating machinery using model based diagnostic techniques. JSME Int. J. C46, 1026–1034 (2003)Google Scholar
  12. 12.
    Bachschmid, N., Pennacchi, P., Vania, A., et al.: Identification of rub and unbalance in a 320MW turbogenerator. Int. J. Rot. Mach. 9:97–112 (2003)Google Scholar
  13. 13.
    Coleman, D., Holland, P., Kaden, N., et al.: A system of subroutines for iteratively reweighted least squares computations. ACM Trans. Math. Softw. 6, 327–336 (1980)zbMATHCrossRefGoogle Scholar
  14. 14.
    Zhang, Z.: Parameter estimation techniques: a tutorial with application to conic fitting. Image Vision Comput. 15, 59–76 (1997)CrossRefGoogle Scholar
  15. 15.
    Pennacchi, P.: Robust estimate of excitations in mechanical systems using M-estimators – Theoretical background. J. Sound Vib. 310, 923–946 (2008)CrossRefGoogle Scholar
  16. 16.
    Bachschmid, N., Pennacchi, P., Tanzi, E.: Cracked rotating shafts: typical behaviors, modeling and diagnosis. IUROTOR 2009 – IUTAM Symposium on Emerging trends in Rotor Dynamics, pp. 1–12. New Delhi, India, 23–26 March 2009Google Scholar
  17. 17.
    Pennacchi, P., Vania, A., Bachschmid, N.: Increasing the robustness of fault identification in rotor dynamics by means of M-estimators. Mech. Syst. Signal Process. 21, 3003–3029 (2007)CrossRefGoogle Scholar
  18. 18.
    Pennacchi, P., Vania, A.: Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations. Mech. Syst. Signal Process. 22, 1157–1178 (2008)CrossRefGoogle Scholar
  19. 19.
    Pennacchi, P., Vania, A.: Analysis of rotor-to-stator rub in a large steam turbogenerator. Int. J. Rot. Mach., 2007, 1–8 Article ID 90631 (2007)Google Scholar
  20. 20.
    Bachschmid, N., Pennacchi, P., Vania, A.: Diagnostic significance of orbit shape analysis and its application to improve machine faults detection. J. Brazilian Soc. Mech. Sci. Eng. XXVI, 200–208 (2004)Google Scholar
  21. 21.
    Pennacchi, P., Vania, A.: Accuracy in the Identification of a generator thermal bow. J. Sound Vib. 274, 273–295 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringPolitecnico di MilanoMilanoItaly

Personalised recommendations