Advertisement

Bifurcation Analysis of a Turbocharger Rotor Supported by Floating Ring Bearings

  • Aydin BoyaciEmail author
  • Wolfgang Seemann
  • Carsten Proppe
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)

Abstract

Today, rotors of high-speed turbochargers are commonly supported by floating ring bearings due to their low costs and reduced power losses. A well known effect of such rotor bearing-systems is the occurrence of self-excited vibrations. In order to study the different nonlinear vibration effects with the methods of numerical continuation, a perfectly balanced flexible turbocharger rotor is considered which is supported by two identical floating ring bearings. Here, the bearing forces are modeled by applying the short bearing theory for both fluid films. After deriving the equations of motion of the turbocharger rotor, bifurcation analyses are carried out with both rigid and flexible model. Thereby, the main focus of the investigation is on the limit-cycle oscillation of higher amplitudes, which may cause rotor damage.In the lower speed range of operation the equilibrium position of the turbocharger rotor becomes unstable by a Hopf bifurcation emerging limit-cycle oscillations. By increasing the rotor speed the limit-cycle may lose its stability by a torus bifurcations leading into an area of quasi-periodic vibrations of the system. Further torus bifurcations, which emanate stable limit-cycles again, and various jump phenomena are also observed. For higher speed ranges a saddle-node bifurcation may occur from which stable limit-cycle oscillations of high amplitudes arise. The rotor speed, where this saddle-node bifurcation takes place, may be defined as a nonlinear critical speed of the turbocharger system supported by floating ring bearings. In the range of the nonlinear critical speed the bifurcation behavior of the turbocharger in floating ring bearings is quite complicated, since a further stable solution coexists beside the critical limit-cycle oscillation.

Keywords

Turbocharger Floating ring bearing Stability Bifurcation Nonlinear vibrations Numerical continuation 

References

  1. 1.
    Boyaci, A., Hetzler, H., Seemann, W., Proppe, C., Wauer, J.: Analytical bifurcation analysis of a rotor supported by floating ring bearings. Nonlinear Dyn. DOI: 10.1007/s11071-008-9403-x (2008)Google Scholar
  2. 2.
    Boyaci, A., Steinhilber, G., Seemann, W., Proppe, C.: Zur Stabilität eines in Gleitlagern laufenden elastischen Rotors. SIRM 2009–8. Internationale Tagung Schwingungen in rotierenden Maschinen, ISBN 978-3-200-01412-1, Wien (2009)Google Scholar
  3. 3.
    Dhooge, A., Govaerts, W., Kuznetsov, Yu.A., Mestrom, W., Riet, A.M., Sautois, B.: MATCONT and CL MATCONT: Continuation toolboxes in MATLAB, Ghent University and Utrecht University, Ghent and Utrecht (2006)Google Scholar
  4. 4.
    Genta, G.: Dynamics of rotating systems. Springer, New York (2005)Google Scholar
  5. 5.
    Li, C.H. Dynamics of rotor bearing systems supported by floating ring bearings. ASME J. Lubric. Technol. 104, 469–477 (1982)CrossRefGoogle Scholar
  6. 6.
    Moser, F.: Stabilität und Verzweigungsverhalten eines nichtlinearen Rotor-Lager-Systems, Dissertation, Technische Universität Wien, Wien (1993)Google Scholar
  7. 7.
    Myers, C.J. Bifurcation theory applied to oil whirl in plain cylindrical journal bearings. ASME J. Appl. Mech. 51, 244–250 (1984)zbMATHCrossRefGoogle Scholar
  8. 8.
    Riemer, M., Wauer, J., Wedig, W.: Mathematische Methoden der Technischen Mechanik. Springer, Berlin/Heidelberg (1993)zbMATHGoogle Scholar
  9. 9.
    Schweizer, B.: Oil whirl, oil whip and whirl/whip synchronization occurring in rotor systems with full-floating ring bearings. Nonlinear Dyn. DOI: 10.1007/s11071-009-9466-3 (2009)Google Scholar
  10. 10.
    Schweizer, B.: Vibrations and bifurcations of turbocharger rotors. SIRM 2009 – 8th International Conference on Vibrations in Rotating Machines, ISBN 978-3-200-01412-1, Wien (2009)Google Scholar
  11. 11.
    Schweizer, B., Sievert, M.: Nonlinear oscillations of automotive turbocharger turbines. J. Sound Vibr. DOI:10.1016/j.jsv.2008.10.013 (2009)Google Scholar
  12. 12.
    Sundararajan, P., Noah, S.T.: Dynamics of forced nonlinear systems using shooting/arc-length continuation method : Application to rotor systems. ASME J. Vibr. Acoust. 119(1), 9–20 (1997)CrossRefGoogle Scholar
  13. 13.
    Szeri, A.Z.: Fluid Film Lubrication. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  14. 14.
    Tanaka, M., Hori, Y.: Stability characteristics of floating bush bearings. ASME J. Lubric. Technol. 93(3), 248–259 (1972)CrossRefGoogle Scholar
  15. 15.
    Wang, J.K., Khonsari, M.M.: Bifurcation analysis of a flexible rotor supported by two fluid-film bearings, ASME J. Tribol. 128(3), 594–603 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aydin Boyaci
    • 1
    Email author
  • Wolfgang Seemann
    • 1
  • Carsten Proppe
    • 1
  1. 1.Institut für Technische MechanikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations