Skip to main content

Optimized Life Using Frequency and Time Domain Approaches

  • Conference paper
  • First Online:

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 1011))

Abstract

Life estimation of mechanical components has been practiced for quite some time. There are two approaches available: (1) use the response in time domain and do a cycle counting and (2) determine the response in frequency domain and use a cumulative damage calculation to cross the resonance. These two methods apparently look different and generally not connected. Here we examine these methods and their applicability in determining life of mechanical components and find their suitability for different applications. We will also discuss their common aspects and state their relative advantages and disadvantages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wöhler, A.: Versuche űber die Festigkeit der Eisenbahnwagen-Achsen. Zeitschrift fűr Bauwesen (1860)

    Google Scholar 

  2. Heywood, R.B.: Designing Against Fatigue. Chapman and Hall (1962)

    Google Scholar 

  3. Bagci, C.: Fatigue design of machine elements using Bagci line defining the fatigue failure surface line (mean stress diagram). Mechanism and Machine Theory 16, 339 (1997)

    Article  Google Scholar 

  4. Rao, J.S.: Turbomachine Blade Vibration. John Wiley, 1991 and New Age International (1997)

    Google Scholar 

  5. Ludwik, P.: Elemente der technologischen mechanik. Springer (1909)

    Google Scholar 

  6. Hollomon, J.H.: Tensile deformation. Trans. Am. Inst. Min. Metall. Eng. 162, 268 (1945)

    Google Scholar 

  7. Neuber, H.: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. J. Appl. Mech. 8, 544 (1961)

    MathSciNet  Google Scholar 

  8. Topper, T.H., Wetzel, R.M., Morrow, J.D.: Neuber’s rule applied to fatigue of notched specimens. J. Mater. 4(1), 200 (1969)

    Google Scholar 

  9. Impellizzeri, L.F.: Cumulative damage analysis in structural fatigue, effects of environment and complex load history on fatigue life. STP-462, ASTM, 40 (1970)

    Google Scholar 

  10. Socie, D.F., Dowling, N.E., Kurath, P.: Fatigue life estimation of notched members. Proc. 15th Symp. Frac. Mech., STP 833, 284 (1984)

    Google Scholar 

  11. Basquin, O.H.: The experimental law of endurance tests. Proc. ASTM 10, 625 (1910)

    Google Scholar 

  12. Manson, S.S.: Behavior of Materials Under Constant Thermal Stress. Heat Transfer Symposium, University of Michigan, Engineering Research Institute, p. 9 (1953)

    Google Scholar 

  13. Coffin, L.F., Jr: A study of the effects of cyclic thermal stresses on a ductile material. Trans. ASME 76, 931 (1954)

    Google Scholar 

  14. Palmgren, A.: Die lebensdauer von kugellagern. ZVDI 68, 339 (1924)

    Google Scholar 

  15. Miner, M.A.: Cumulative damage in fatigue. Trans. ASME, J. Appl. Mech. 67, A159 (1945)

    Google Scholar 

  16. Marco, S.M., Starkey, W.L.: A concept of fatigue damage. Trans. ASME 76, 627 (1954)

    Google Scholar 

  17. Rao, J.S., Pathak, A., Chawla, A.: Blade life – a comparison by cumulative damage theories. J. Eng. Gas Turb. and Power 123(4), 886 (2001)

    Article  Google Scholar 

  18. Collins, J.A.: Failure of Materials in Mechanical Design. John Wiley (1993)

    Google Scholar 

  19. Rao, J.S.: Turbine Blade Life Estimation. Alpha Science, UK (2001)

    Google Scholar 

  20. Dowling, N.E.: Fatigue failure predictions for complicated stress-strain histories. J. Mater. 7(1), 71–87 (1972)

    MathSciNet  Google Scholar 

  21. Altair HyperWorks 9.0 Fatigue Process Manager FMP

    Google Scholar 

  22. Rao, J.S., Vyas, N.S., Gupta, K.: Blade damping measurement in a spin rig with nozzle passing excitation simulated by electromagnets. Shock & Vib. Bull. 56(Pt 2), 109 (1986)

    Google Scholar 

  23. Rao, J.S., Saldanha, A.: Turbomachine blade damping. J. Sound and Vib. 262(3), 731 (2003)

    Article  Google Scholar 

  24. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press (1968)

    Google Scholar 

  25. Rao, J.S., Gupta, K.: Theory and Practice of Mechanical Vibration. John Wiley (1984)

    Google Scholar 

  26. Rao, J.S., Vyas, N.S.: Determination of blade stresses under constant speed and transient conditions with nonlinear damping. J. Eng. Gas Turb. and Power, Trans ASME 118(2), 424 (1996)

    Google Scholar 

  27. Rao, J.S., Narayan, R., Ranjith, M.C.: Lifing of Turbomachinery Blades – A Process Driven Approach. GT2008-50231, ASME Turbo Expo 2008, Berlin, Germany, 9–13 June 2008

    Google Scholar 

  28. Rao, J.S., Narayan, R., Ranjith, M.C., Rejin, R.: Blade lifing with material and friction damping. The future of gas turbine technology, 4th International Conference, Brussels, Belgium, 15–16 October 2008

    Google Scholar 

  29. Rao, J.S., Mahadevappa, V., Dey, P., Rajeshwar, B., Kumar, H.: Automotive driveline simulation. International Conference on CAE, IIT, Madras, 13–15 December 2007

    Google Scholar 

  30. Rao, J.S., Narayan, R.: Lifing of Automobile Structures and Drive Trains in Frequency Domain. Automotive Symposium India (ASI), Mumbai, Global Automotive Management Council, Michigan, USA, 4–5 February 2009

    Google Scholar 

  31. Rao, J.S., Peraiah, K.C., Singh, U.K.: Estimation of dynamic stresses in last stage steam turbine blades under reverse flow conditions. Advances in Vibration Engineering, J. Vib. Inst. India 8(1), 71 (2009)

    Google Scholar 

  32. Rao, J.S., Suresh, S.: Blade root shape optimization. The Future of Gas Turbine Technology, 3rd International Conference, Brussels, October (2006)

    Google Scholar 

  33. Altair HyperStudy: User’s Manual v7.0. Troy, MI (2003)

    Google Scholar 

Download references

Acknowledgements

The author is thankful to many of his colleagues who performed variety of lifing and optimization problems in Altair India and in IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rao, J.S. (2011). Optimized Life Using Frequency and Time Domain Approaches. In: Gupta, K. (eds) IUTAM Symposium on Emerging Trends in Rotor Dynamics. IUTAM Bookseries, vol 1011. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0020-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0020-8_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0019-2

  • Online ISBN: 978-94-007-0020-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics