Trends in Controllable Oil Film Bearings

  • Ilmar F. SantosEmail author
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)


This work gives an overview about the theoretical and experimental achievements of mechatronics applied to oil film bearings, with the aim of: controlling the lateral vibration of flexible rotating shafts; modifying bearing dynamic characteristics, as stiffness and damping properties; increasing the rotational speed ranges by improving damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing startup torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable bearings can act as “smart” components and be applied to rotating machines with the goal of avoiding unexpected stops of plants, performing rotordynamic tests and identifying model parameters “on site”. Emphasis is given to the controllable lubrication (active lubrication) applied to different types of oil film bearings, i.e., as tilting-pad bearings, multirecess journal bearings and plain bearings.


Controllable bearings Active lubrication Smart bearings Active rotor vibration control Rotortronics Bearing testing Bearing parameter identification 


  1. 1.
    Adiletta, G., Pietra, L.D.: The squeeze film damper over four decades of investigations. Part II: Rotordynamic analyses with rigid and flexible rotors. Shock Vibr. Digest 32(2), 97–127 (2002)Google Scholar
  2. 2.
    Althaus, J.: Eine aktive hydraulische Lagerung für Rotorsysteme. Fortschritt-Berichte VDI, Series 11, N 154. VDI-Verlag, Germany (1991)Google Scholar
  3. 3.
    Bently, D.E., Grant, J.W., Hanifan, P.: Active controlled hydrostatic bearings for a new generation of machines. ASME/IGTI International Gas Turbine & Aeroengine Congress & Exhibition, Munich, May 8–11, 2000-GT-354 (2000)Google Scholar
  4. 4.
    Bently, D.E., Eldridge, T., Jensen, J., Mol, P.: Externally pressurized bearings allow rotor dynamic optmization. VDI-Berichte Nr. 1640, 49–61 (2001)Google Scholar
  5. 5.
    El-Shafei, A., Hathout, J.P.: Development and control of hsfds for active control of rotor-bearing systems. ASME Trans. J. Eng. Gas Turbine Power 117(4), 757–766 (1995)CrossRefGoogle Scholar
  6. 6.
    Estupiñan, E.A., Santos, I.F.: Dynamic modeling of hermetic reciprocating compressors, combining multibody dynamics, finite elements method and fluid film lubrication. Int. J. Mech. 1(4), 36–43 (2007)Google Scholar
  7. 7.
    Estupiñan, E.A., Santos, I.F.: Linking rigid multibody systems via controllable thin fluid films. Tribol. Int. 42(10), 1478–1486 (2009)CrossRefGoogle Scholar
  8. 8.
    Goodwin, M.J., Boroomand, T., Hooke, C.J.: Variable impedance hydrodynamic journal bearings for controlling flexible rotor vibrations. 12th Biennial ASME Conference on Vibration and Noise, Montreal, Canada, Sept 17–21: 261–267 (1989)Google Scholar
  9. 9.
    Haugaard, M.A., Santos, I.F.: Flexibility effects in tilting pad journal bearings with radial oil injection. 7th European Conference on Structural Dynamics, The Institute of Sound and Vibration Research, University of Southampton, England, Ref.E187: 1–10 (2008)Google Scholar
  10. 10.
    Haugaard, M.A., Santos, I.F.: Flexibility effects in tilting pad journal bearings with controllable radial oil injection. 13th Nordic Symposium on Tribology, Tampere, Finland, NT2008-43-4, ISBN 978-952-15-1959-8 (2008)Google Scholar
  11. 11.
    Haugaard, M.A., Santos, I.F.: Elastohydrodynamics applied to active tilting-pad journal bearings. ASME Trans J. Tribol. 132(2), (2010), In Press (submitted)Google Scholar
  12. 12.
    Heshmat, H., Ming-Chen, H., Walton II, J.F.: On the performance of hybrid foil-magnetic bearings. ASME Trans J. Eng. Gas Turbines Power 122(1), 73–81 (2000)CrossRefGoogle Scholar
  13. 13.
    Jung, C.S., Choi, S.B.: Analysis of a short squeeze film damper operating with electrorheological fluids. STLE Tribol. Trans. 38(4), 857–862 (1995)CrossRefGoogle Scholar
  14. 14.
    Kjølhede, K., Santos, I.F.: Experimental contribution to high precision characterization of magnetic forces in active magnetic bearings. ASME Trans. J. Eng. Gas Turbine Power 129(2), 505–510 (2007)Google Scholar
  15. 15.
    Krodkiewski, J.M., Sun, L.: Modelling of multi-bearing rotor system incorporating an active journal bearing. J. Sound Vibr. 210(1), 215–229 (1998)CrossRefGoogle Scholar
  16. 16.
    Lund, J.W., Thomsen, K.K.: (1978) A calculation method and data for the dynamic coefficients of oil lubricated journal bearings. In: Rhode, S.M., Allaire, P.E., Maday, C.J. (eds.) Topics in Fluid Film Bearings and Rotor Bearing System Design and Optimization, pp. 1–28. ASME, New YorkGoogle Scholar
  17. 17.
    Morishita, S., Mitsui, J.: Controllable squeeze film damper: an application of electro-rheological fluid. Rotat. Mach. Vehicle Dyn. ASME DE-Vol. 35(2), 257–262 (1991)Google Scholar
  18. 18.
    Nikolajsen, J.L., Hoque, M.S.: An electroviscous damper. Proceedings of Workshop on Rotordynamic Instability Problems i High Performance Turbomachinery, NASA Conference Publication, #3026 (1988)Google Scholar
  19. 19.
    Nicoletti, R., Santos, I.F.: Linear and non-linear control techniques applied to actively lubricated journal bearings. J. Sound Vibr. 260(5), 927–947 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Nicoletti, R., Santos, I.F.: Frequency response analysis of an actively lubricated rotor/tilting-pad bearing system. ASME Trans. J. Eng. Gas Turbine Power 127(3), 638–645 (2005)CrossRefGoogle Scholar
  21. 21.
    Nicoletti, R., Santos, I.F.: Control system design for flexible rotors supported by actively lubricated bearings. J. Vibr. Control 14(3), 347–374 (2008)CrossRefGoogle Scholar
  22. 22.
    Osman, T.A., Nada, G.S., Safar, Z.S.: Static and dynamic characteristics of magnetised journal bearings lubricated with ferrofluid. Tribol. Int. 34(6), 369–380 (2001)CrossRefGoogle Scholar
  23. 23.
    Palazzolo, A.B., Lin, R.R., Alexander, R.M., Kascak, A.F., Montague, G.: Test and theory for piezoelectric actuator – active vibration control of rotating machinery. ASME Trans. J. Vibr. Acoust. 113(2), 167–175 (1991)CrossRefGoogle Scholar
  24. 24.
    Pietra, L.D., Adiletta, G.: The squeeze film damper over four decades of investigations. Part I: Characteristics and operating features. Shock Vibr. Digest 34(1), 3–27 (2002)Google Scholar
  25. 25.
    Santos, I.F.: Aktive Kippsegmentlagerung – Theorie und Experiment. VDI – Fortschritt-Berichte; Reihe 11: Schwingungstechnik, N 189. VDI Verlag, Düsseldorf, Germany (1993)Google Scholar
  26. 26.
    Santos, I.F.: Design and evaluation of two types of active tilting pad journal bearings. In: Burrows, C.R., Keogh, P.S. (eds.) The Active Control of Vibration, pp. 79–87. Mechanical Engineering Publications Limited, London, England. ISBN 0-85298-916-4 (1993)Google Scholar
  27. 27.
    Santos, I.F.: Strategien für die Erhöhung der Dämpfungsreserve von kippsegmentgelagerten Rotorsystemen”. In: Irretier, H., Nordmann, R., Springer, H. (eds.) (trans: Strategies for increasing the damping properties of rotating systems supported by tilting-pad bearings) Schwingungen in rotierenden Maschinen, vol. 3, pp. 3–12. Vieweg Verlag, Braunschweig, Germany, ISBN 3-528-06655-5 (1995)Google Scholar
  28. 28.
    Santos, I.F.: Aktive Schmierung zur Regelung von Rotorsystemen. Schwingungen in Rotierenden Maschinen. In: Irretier, H., Nordmann, R. (eds.) (trans: Active Lubrication for Controlling Rotating Systems), vol. 4, pp. 37–47. Springer, Braunshweig, Germany, ISBN 3-528-06908-2 (1997)Google Scholar
  29. 29.
    Santos, I.F., Russo, F.H.: Tilting-pad journal bearings with electronic radial oil injection. ASME Trans. J. Tribol. 120(3), 583–594 (1998)CrossRefGoogle Scholar
  30. 30.
    Santos, I.F., Scalabrin, A., Nicoletti, R.: Beitrag zur aktiven Schmierungstheorie. Schwingungen in Rotierenden Maschinen. In: Irretier, H., Nordmann, R. (eds.) (trans: Contribution to Active Lubrication Theory), vol. 5, pp. 21–30. Springer, Braunshweig, Germany, ISBN 3-528-03938-8 (2001)Google Scholar
  31. 31.
    Santos, I.F., Ulbrich, H.: Zur Anwendung von Regelungskonzepten für aktive Kippsegmentlager, ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik 73(4), 241–244 (1993)Google Scholar
  32. 32.
    Santos, I.F., Scalabrin, A.: Control system design for active lubrication with theoretical and experimental examples. ASME Trans. J. Eng. Gas Turbine Power 125, 75–80 (2003)CrossRefGoogle Scholar
  33. 33.
    Santos, I.F., Watanabe, F.Y.: Feasibility of influencing the dynamic film coefficients of a multirecess journal bearing by means of active hybrid lubrication. J. Brazil. Soc. Mech. Sci. Eng. 25(2), 154–163 (2003)Google Scholar
  34. 34.
    Santos, I.F., Watanabe, F.Y.: Compensation of cross-coupling stiffness and increase of direct damping in multirecess journal bearings using active hybrid lubrication – Part I: Theory. ASME Trans. J. Tribol. 126(1), 146–155 (2004)CrossRefGoogle Scholar
  35. 35.
    Santos, I.F., Nicoletti, R., Scalabrin, A.: Feasibility of applying active lubrication to reduce vibration in industrial compressors. ASME Trans. J. Eng. Gas Turbine Power 126(4), 888–894 (2004)Google Scholar
  36. 36.
    Santos, I.F., Watanabe, F.Y.: Lateral dynamics and stability analysis of a gas compressor supported by hybrid and active lubricated multirecess journal bearing. J. Brazil. Soc. Mech. Sci. Eng. 28(4), 486–496 (2006)Google Scholar
  37. 37.
    Schweitzer, G.: Magnetic bearings as a component of smart rotating machinery. Proceedings of 5th IFToMM International Conference on Rotor Dynamics, edited by Irretier H., Nordmann R., Springer H., Darmstadt University of Technology, Germany, pp. 3–15 (1998)Google Scholar
  38. 38.
    Someya, T.: Journal Bearing Data Book. Springer, Berlin (1989)Google Scholar
  39. 39.
    Sun, L., Krodkiewski, J.M.: Experimental investigation of dynamic properties of an active journal bearing. J. Sound Vibr. 230, 1103–1117 (2000)CrossRefGoogle Scholar
  40. 40.
    Tang, P., Palazzolo, A., Kascak, A., Montague, G., Li, W.: Combined piezoelectric-hydraulic actuator based active vibration control for rotordynamic system. ASME Trans. J. Vibr. Acoust. 117(3), 285–293 (1995)CrossRefGoogle Scholar
  41. 41.
    Ulbrich, H., Althaus, J.: Actuator design for rotor control, 12th Biennial ASME Conference on Vibration and Noise, Montreal, Canada: 17–22, Sept: 17–21 (1989)Google Scholar
  42. 42.
    Vance, J.M., Li, J.: Test results of a new damper seal for vibration reduction in turbomachinery. ASME Trans. J. Eng. Gas Turbines Power 118(4), 843–846 (1996)CrossRefGoogle Scholar
  43. 43.
    Vance, J.M., Ying, D.: Experimental measurements of actively controlled bearing damping with an electrorheological fluid. ASME Trans. J. Eng. Gas Turbines Power 122(2), 337–344 (2000)CrossRefGoogle Scholar
  44. 44.
    Vance, J.M., Ying, D., Nikolajsen, J.L.: Actively controlled bearing dampers for aircraft engine applications. ASME Trans. J. Eng. Gas Turbines Power 122(3), 466–472 (2000)CrossRefGoogle Scholar
  45. 45.
    Zhu, C., Robb, D.A., Ewins, D.J.: A variable stiffness squeeze film damper for passing through the critical speeds of rotors. Proceeding of IMAC-19: A Conference on Structure Dynamics, vol. 2, pp. 1264–1269 (2001)Google Scholar
  46. 46.
    Zhu, C., Robb, D.A., Ewins, D.J.: A magneto-rheological fluid squeeze film damper for rotor vibration control. Proceeding of SPIE’s 9th Annual International Symposium on Smart Structures and Materials, vol. 4753, pp. I: 516–522 (2002)Google Scholar
  47. 47.
    Zhu, C., Robb, D.A., Ewins, D.J.: On-off control of rotor vibration by a disk-type magneto-rheological fluid damper. Proceeding of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, February, 10–14, pp. 1–7 (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.MEK Ű Dept. of Mechanical EngineeringDTU- Tech.University of DenmarkLyngbyDENMARK

Personalised recommendations