Advertisement

Unbalance Response Analysis of a Spinning Rotor Mounted on a Precessing Platform

  • Ankuran Saha
  • Rajesh Ghosh
  • Arghya Nandi
  • Sumanta Neogy
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)

Abstract

The present work deals with analysis of a uniformly spinning shaft with a non-central disc mounted on a rotating (precessing) base, where the spin axis and the precession axis intersect at right angle. The motion of the rotor is such that it undergoes small elastic deformation superposed on rigid body rotation about a point. It is assumed that the shaft is axially and torsionally stiff and the disc has four degrees of freedom. Due to unbalance excitation, somewhat like a rotor on an orthotropic support, this rotor has also been found to undergo backwardwhirl.

Keywords

Spin Precession Rotor Unbalance response Backward whirl 

References

  1. 1.
    Nelson, H.D., McVaugh, J.M.: The dynamics of rotor bearing systems using finite elements. J.Eng. Ind. 98(2), 593–600(1976)CrossRefGoogle Scholar
  2. 2.
    Gmur, T.C., Rodrigues, J.D.: Shaft finite elements for rotor dynamics analysis. J. Vib. Acoust. 113, 482–493(1993)CrossRefGoogle Scholar
  3. 3.
    Stephenson, R.W., Rouch, K.E.: Modeling rotating shafts using axisymmetric solid finite elements with matrix reduction. J. Vib. Acoust. 115(1), 484–489(1993)CrossRefGoogle Scholar
  4. 4.
    Nandi, A., Neogy, S.: Modeling of rotors using three-dimensional solid finite elements. J. Strain Anal. Eng. 36(4), 359–371(2001)CrossRefGoogle Scholar
  5. 5.
    Nandi, A., Neogy, S., Das, A.S.: Application of harmonic balance technique to finite element models of asymmetric rotors via sparse Kronecker products. J. Strain Anal. Eng. 40, 1–9(2005)CrossRefGoogle Scholar
  6. 6.
    Mahadevan, P., Jog, C.S., Chatterjee, A.: Modal projections for synchronous rotor whirl. P.Roy. Soc. Lond. A. Mat. 464, 1739–1760(2008)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lin, F., Meng, G. Study on the dynamics of a rotor in a maneuvering aircraft. J. Vib. Acoust. 125, 324–327(2003)CrossRefGoogle Scholar
  8. 8.
    Genta, G.: Dynamics of Rotating Systems. Springer, Italy (2004)Google Scholar
  9. 9.
    Oguamanam, D.C.D., Arshad, M.: On the natural frequency of a flexible manipulator with a tip payload. J. Mech. Eng. Sci. 219(11), 1199–1205(2005)Google Scholar
  10. 10.
    Xiao, S., Chen, B., Du, Q.: On dynamic behavior of a cantilever with tip mass in centrifugal field. Mech. Base Des. Struc. 33, 79–98(2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ankuran Saha
    • 1
  • Rajesh Ghosh
    • 1
  • Arghya Nandi
    • 1
  • Sumanta Neogy
    • 1
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations