Rotating Internal Damping in the Case of Composite Shafts

  • G. Jacquet-RichardetEmail author
  • E. Chatelet
  • T. Nouri-Baranger
Conference paper
Part of the IUTAM Bookseries book series (IUTAMBOOK, volume 1011)


There is an increasing range of applications for rotors made of composite materials and operating at supercritical speeds. Design of such structures involves specific features which have to be accounted for in order to allow safe operations. A proper modeling of the mechanical characteristics of the composite is first needed. But, as far as the structure is rotating, the effect of stress stiffening and spin softening may be considered and the effect of internal damping has to be studied in order to avoid possible instability. Internal or rotating damping modeling remains an active field of research where both theoretical developments and experimental results are needed.


Rotating shaft Composite material Instability Internal damping Rotating damping 



The authors wish to thank Pr. C. Hochard from the Laboratoire de Mécanique et d’Acoustique, UPR CNRS 7051 Marseille France and Dr O. Montagnier for providing the experimental data presented in Sect. 4.


  1. 1.
    Newkirk, B.L.: Shaft whipping. Gen. Electr. Rev. 27(3), 169–178 (1924)Google Scholar
  2. 2.
    Genta, G.: Dynamics of Rotating Systems. Springer, New York (2005)Google Scholar
  3. 3.
    Cerminaro, A.M., Nelson, F.C.: The Effect of Viscous and Hysteretic Damping Rotor Stability. ASME TURBOEXPO, Munich, Germany (2000)Google Scholar
  4. 4.
    Sino, R., Chatelet, E., Montagnier, O., Jacquet-Richardet, G.: Dynamic Instability of Internally Damped Rotors. ASME TURBOEXPO, Montreal, Canada (2007)Google Scholar
  5. 5.
    Genta, G.: On a persistent misunderstanding of the role of hysteretic damping in rotordynamics. J. Vib. Acoust. 126, 459–461 (2004)CrossRefGoogle Scholar
  6. 6.
    Genta, G.: Time domain simulation of rotors with hysteretic damping. In: Nineth International Conference on Vibrations in Rotating Machinery, Exeter, pp.799–810 (2008)Google Scholar
  7. 7.
    Vatta, F., Vigliani, A.: Internal damping in rotating shafts. Mech. Mach. Theor. 43, 1376–1384 (2008)zbMATHCrossRefGoogle Scholar
  8. 8.
    Darlow, M.S., Creonte, J.: Optimal design of composite helicopter power transmission shafts with axially varying fiber lay-up. J. Am. Helicop. Soc. 40(2), 50–56 (1995)CrossRefGoogle Scholar
  9. 9.
    Singh, S.P., Gupta, K.: Damping measurements in fiber reinforced composite rotors. J. Sound Vib. 211(3), 513–520 (1998)CrossRefGoogle Scholar
  10. 10.
    Chatelet, E., Lornage, D., Jacquet-Richardet, G.: A three-dimensional modeling of the dynamic behavior of composite rotors. Int. J. Rotating Mach. 8(3), 185–192 (2002)CrossRefGoogle Scholar
  11. 11.
    Bauchau, O.: Optimal design of high speed rotating graphite/epoxy shafts. J. Compo. Mater. 17(3), 170–181 (1983)CrossRefGoogle Scholar
  12. 12.
    Pereira, J.C., Marcio, E.S.: Evaluation and Optimization of the Instability Regions on Rotors in Wounding Shaft. II Congresso Nacional de Engenharia Mecânica, João Pessoa, Brazil (2002)Google Scholar
  13. 13.
    Wettergren, H.L., Olsson, K.O.: Dynamic instability of a rotating asymmetric shaft with internal viscous damping supported in anisotropic bearings. J. Sound Vib. 195(1), 75–84 (1996)CrossRefGoogle Scholar
  14. 14.
    Singh, S.P., Gupta, K.: Free damped flexural vibration analysis of composite cylindrical tubes using beam and shell theories. J. Sound Vib. 172(2), 171–190 (1994)zbMATHCrossRefGoogle Scholar
  15. 15.
    Sino, R., Baranger, T.N., Chatelet, E., Jacquet, G.: Dynamic analysis of rotating composite shaft. Compo. Sci. Technol. 68(2), 337–345 (2008)CrossRefGoogle Scholar
  16. 16.
    Montagnier, O., Hochard, C.:Etude théorique et expérimentale de la dynamique des arbres de transmission supercritiques. 17ème congrès Français de Mécanique, Troyes, 29 Août-2 Septembre (2005)Google Scholar
  17. 17.
    Montagnier, O., Hochard, C.: Design of Supercritical Composite Helicopter Driveshafts: Theoretical and Experimental Study. European Conference for Aerospace Sciences (EUCASS) (2005)Google Scholar
  18. 18.
    Osinski, Z.: Damping of Vibrations. Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland, A.A.balkema (1998)Google Scholar
  19. 19.
    Lalanne, M., Ferraris, G.: Rotordynamics Prediction in Engineering, 2nd edn. J. Wiley and Sons, p. 254 (1998)Google Scholar
  20. 20.
    Dutt, J.K., Nakra, B.C.: Stability of rotor systems with viscoelastic supports. J. Sound Vib. 153(1), 89–96 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Jacquet-Richardet
    • 1
    Email author
  • E. Chatelet
    • 1
  • T. Nouri-Baranger
    • 1
  1. 1.Université de Lyon, CNRSLyonFrance

Personalised recommendations