Advertisement

Numerical Methods for Ultrasonic Bone Characterization

  • Emmanuel Bossy
  • Quentin GrimalEmail author
Chapter

Abstract

During the last decade the possibility of investigating the details of wave phenomena with numerical simulation has caused an evolution of the research methodology in ultrasonic bone characterization. Use of numerical simulation as a surrogate of an in vitro or in vivo experiment has been validated in some cases in which the major propagation characteristics observed experimentally could be accurately simulated in trabecular bone as well as in cortical bone. This chapter can be thought of as a guide to numerical modeling for ultrasonic bone characterization, from the definition of the model configuration (geometry, material properties, etc.) to the computation of the solutions with popular finite difference or finite element algorithms. A comprehensive review of the published works in which numerical simulation served to investigate wave phenomena in bone and surrounding structures is provided.

Keywords

Finite difference Finite element Time integration Boundary conditions PML Heterogeneous medium Nominal model Individualized model 

Notes

Acknowledgements

The authors are grateful to Lucie Fréret for providing helpful comments and suggestions.

References

  1. 1.
    E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography, Physics in Medicine and Biology 50, 5545–5556 (2005).CrossRefPubMedGoogle Scholar
  2. 2.
    Y. Nagatani, H. Imaizumi, T. Fukuda, M. Matsukawa, Y. Watanabe, and T. Otani, Applicability of finite-difference time-domain method to simulation of wave propagation in cancellous bone, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications and Review Papers 45, 7186–7190 (2006).Google Scholar
  3. 3.
    P. Nicholson, P. Moilanen, T. Kärkkäinen, J. Timonen, and S. Cheng, Guided ultrasonic waves in long bones: modelling, experiment and application, Physiological Measurements 23, 755–768 (2002).CrossRefGoogle Scholar
  4. 4.
    E. Bossy, M. Talmant, and P. Laugier, Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models, Journal of the Acoustical Society of America 115, 2314–2324 (2004).CrossRefPubMedGoogle Scholar
  5. 5.
    P. Moilanen, M. Talmant, V. Bousson, P. H. F. Nicholson, S. Cheng, J. Timonen, and P. Laugier, Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments, Journal of the Acoustical Society of America 122, 1818–1826 (2007).CrossRefPubMedGoogle Scholar
  6. 6.
    K. Yee, Numerical solutions of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE Transactions on Antennas and Propagation AP-14(3), 302–307 (1966).Google Scholar
  7. 7.
    A. Hrenikoff, Solution of problems of elasticity by the framework method, Journal of Applied Mechanics A8, 169–175 (1941).Google Scholar
  8. 8.
    R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bulletin of the American Mathematical Society 49, 1–61 (1943).CrossRefGoogle Scholar
  9. 9.
    B. A. Auld, Acoustic Fields and waves in solids, 2nd edition (Krieger Publishing Company, Malabar) (1990).Google Scholar
  10. 10.
    D. Royer and E. Dieulesaint, Elastic waves in solids I, 2nd edition (Springer-Verlag, Berlin) (1999).Google Scholar
  11. 11.
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone, Journal of the Acoustical Society of America 125 (2009).Google Scholar
  12. 12.
    B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation 31, 629–651 (1977).CrossRefGoogle Scholar
  13. 13.
    G. C. Cohen, Higher-order numerical methods (Springer, Berlin) (2002).Google Scholar
  14. 14.
    E. Bossy, M. Talmant, and P. Laugier, Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2d simulation study, Journal of the Acoustical Society of America 112, 297–307 (2002).CrossRefPubMedGoogle Scholar
  15. 15.
    G. Haiat, S. Naili, Q. Grimal, M. Talmant, C. Desceliers, and C. Soize, Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission, Journal of the Acoustical Society of America 125, 4043–4052 (2009).CrossRefPubMedGoogle Scholar
  16. 16.
    V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, Guided ultrasound wave propagation in intact and healing long bones, Ultrasound in Medicine and Biology 32, 693–708 (2006).CrossRefPubMedGoogle Scholar
  17. 17.
    S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, Ultrasonic propagation in cortical bone mimics, Physics in Medicine and Biology 51, 4635–4647 (2006).CrossRefPubMedGoogle Scholar
  18. 18.
    V. Le Floch, D. J. McMahon, G. Luo, A. Cohen, J. J. Kaufman, E. Shane, and R. S. Siffert, Ultrasound simulation in the distal radius using clinical high-resolution peripheral-ct images, Ultrasound in Medicine and Biology 34, 1317–1326 (2008).CrossRefPubMedGoogle Scholar
  19. 19.
    J. Grondin, Q. Grimal, K. Engelke, and P. Laugier, Potential of first arriving signal to assess cortical bone geometry at the hip with qus: a model based study, Ultrasound in Medicine and Biology 4, 656–666 (2010).CrossRefGoogle Scholar
  20. 20.
    X. Guo, D. Yang, D. Zhang, W. Li, Y. Qiu, and J. Wu, Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study, Journal of the Acoustical Society of America 125, 2834–2837 (2009).CrossRefPubMedGoogle Scholar
  21. 21.
    P. Moilanen, M. Talmant, P. H. F. Nicholson, S. Cheng, J. Timonen, and P. Laugier, Ultrasonically determined thickness of long cortical bones: three-dimensional simulations of in vitro experiments, Journal of the Acoustical Society of America 122, 2439–2245 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    W. Pistoia, B. van Rietbergen, A. Laib, and P. Rüegsegger, High-resolution three-dimensional-pqct images can be an adequate basis for in-vivo micro-fe analysis of bone, Journal of Biomechanical Engineering 123, 176–183 (2001).CrossRefPubMedGoogle Scholar
  23. 23.
    Y. N. Yeni, G. T. Christopherson, X. N. Dong, D. G. Kim, and D. P. Fyhrie, Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone, Journal of Biomechanical Engineering 127, 18 (2005).CrossRefGoogle Scholar
  24. 24.
    C. S. Rajapakse, J. Magland, X. H. Zhang, X. S. Liu, S. L. Wehrli, X. E. Guo, and F. W. Wehrli, Implications of noise and resolution on mechanical properties of trabecular bone estimated by image-based finite-element analysis, Journal of Orthopaedic Research 27, 1263–1271 (2009).CrossRefPubMedGoogle Scholar
  25. 25.
    G. M. Luo, J. J. Kaufman, A. Chiabrera, B. Bianco, J. H. Kinney, D. Haupt, J. T. Ryaby, and R. S. Siffert, Computational methods for ultrasonic bone assessment, Ultrasound in Medicine and Biology 25, 823–830 (1999).CrossRefPubMedGoogle Scholar
  26. 26.
    A. Hosokawa, Simulation of ultrasound propagation through bovine cancellous bone using elastic and biot’s finite-difference time-domain methods, Journal of the Acoustical Society of America 118, 1782–1789 (2005).CrossRefPubMedGoogle Scholar
  27. 27.
    A. Hosokawa, Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods, Ultrasonics 44 (Suppl 1), E227–E231 (2006).CrossRefPubMedGoogle Scholar
  28. 28.
    V. Nguyen, S. Naili, and S. Sansalone, Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid, Wave Motion 47, 117–129 (2009).CrossRefGoogle Scholar
  29. 29.
    Q. Grimal, K. Raum, A. Gerisch, and P. Laugier, About the determination of the representative volume element size in compact bone, in Proceedings of the 19 ème Congrès Français de Mécanique (2009), 6 pages.Google Scholar
  30. 30.
    J. Kabel, B. van Rietbergen, M. Dalstra, A. Odgaard, and R. Huiskes, The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone, Journal of Biomechanics 32, 673–680 (1999).CrossRefPubMedGoogle Scholar
  31. 31.
    Q. Grimal, K. Raum, A. Gerisch, and P. Laugier, Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale, Computer Methods in Biomechanics and Biomedical Engineering 11, 147–157 (2008).CrossRefPubMedGoogle Scholar
  32. 32.
    W. R. Taylor, E. Roland, H. Ploeg, D. Hertig, R. Klabunde, M. D. Warner, M. C. Hobatho, L. Rakotomanana, and S. E. Clift, Determination of orthotropic bone elastic constants using fea and modal analysis, Journal of Biomechanics 35, 767–773 (2002).CrossRefPubMedGoogle Scholar
  33. 33.
    C. Baron, M. Talmant, and P. Laugier, Effect of porosity on effective diagonal stiffness coefficients (c(ii)) and elastic anisotropy of cortical bone at 1 MHz: a finite-difference time domain study, Journal of the Acoustical Society of America 122, 1810–1817 (2007).CrossRefPubMedGoogle Scholar
  34. 34.
    H. S. Yoon and J. L. Katz, Ultrasonic wave propagation in human cortical bone–ii. measurements of elastic properties and microhardness, Journal of Biomechanics 9, 459–464 (1976).Google Scholar
  35. 35.
    H. Yoon and J. Katz, Ultrasonic wave propagation in human cortical bone-i. theoretical considerations for hexagonal symmetry, Journal of Biomechanics 9, 407–412 (1976).Google Scholar
  36. 36.
    A. A. Espinoza Orias, J. M. Deuerling, M. D. Landrigan, J. E. Renaud, and R. K. Roeder, Anatomic variation in the elastic anisotropy of cortical bone tissue in the human femur, Journal of Biomedical Materials Research 2, 255–263 (2009).Google Scholar
  37. 37.
    J. M. Crolet, M. Racila, R. Mahraoui, and A. Meunier, A new numerical concept for modeling hydroxyapatite in human cortical bone, Computer Methods in Biomechanics and Biomedical Engineering 8, 139–43 (2005).PubMedGoogle Scholar
  38. 38.
    C. Baron, Q. Grimal, M. Talmant, and P. Laugier, Investigation of the porous network as a determinant of the overall stiffness of cortical bone: Mori-tanaka model vs. ultrasound propagation, Journal of the Acoustical Society of America 123, 3514 (2008).Google Scholar
  39. 39.
    W. J. Parnell and Q. Grimal, The influence of mesoscale porosity on cortical bone anisotropy. investigations via asymptotic homogenization, Journal of the Royal Society Interface 6, 97–109 (2009).Google Scholar
  40. 40.
    K. Kunz, The finite difference time domain method for electromagnetics (CRC Press, Boca Raton) (1993).Google Scholar
  41. 41.
    K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical methods for physics and engineering, 3 edition (Cambridge University Press, Cambridge, UK) (2006).Google Scholar
  42. 42.
    R. Madariaga, Dynamics of an expanded circular fault, Bulletin of the Seismological Society of America 66, 639–666 (1976).Google Scholar
  43. 43.
    J. Virieux, P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method., Geophysics 51, 889–901 (1986).Google Scholar
  44. 44.
    F. Collino and C. Tsogka, Application of the pml absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media, Geophysics 66, 294–307 (2001).CrossRefGoogle Scholar
  45. 45.
    M. A. Hakulinen, J. S. Day, J. Toyras, H. Weinans, and J. S. Jurvelin, Ultrasonic characterization of human trabecular bone microstructure, Physics in Medicine and Biology 51, 1633–1648 (2006).CrossRefPubMedGoogle Scholar
  46. 46.
    G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation, Journal of Bone and Mineral Research 22, 665–674 (2007).CrossRefPubMedGoogle Scholar
  47. 47.
    O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The finite element method: its basis and fundamentals, 6 edition (Elsevier, Burlington) (2005).Google Scholar
  48. 48.
    C. Desceliers, C. Soize, Q. Grimal, G. Haiat, and S. Naili, A time-domain method to solve transient elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space approximation, Wave Motion 45, 383–399 (2008).CrossRefGoogle Scholar
  49. 49.
    S. Modak and E. Sotelino, The generalized method for structural dynamics applications, Advances in Engineering Software 33, 565–575 (2002).CrossRefGoogle Scholar
  50. 50.
    L. Cagniard, Reflection and Refraction of Progressive Seismic Waves (Gauthier-Villars, Paris) (1962), translation and revision by Flinn, E.A., and Dix, C.H., of Cagniard, L., 1939. Réflexion et Réfraction des Ondes Séismiques Progressives.Google Scholar
  51. 51.
    A. de Hoop, A modification of cagniard’s method for solving seismic pulse problems, Applied Scientific Research 8, 349–356 (1960).CrossRefGoogle Scholar
  52. 52.
    Q. Grimal and S. Naili, A theoretical analysis in the time-domain of wave reflection on a bone plate, Journal of Sound and Vibration 298, 12–29 (2006).CrossRefGoogle Scholar
  53. 53.
    K. Macocco, Q. Grimal, S. Naili, and C. Soize, Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction; application to cortical bone evaluation, Journal of Acoustical Society of America 119, 729–740 (2006).CrossRefGoogle Scholar
  54. 54.
    E. Camus, M. Talmant, G. Berger, and P. Laugier, Analysis of the axial transmission technique for the assessment of skeletal status, Journal of Acoustical Society of America 108, 3058–65 (2000).CrossRefGoogle Scholar
  55. 55.
    J. Diaz and P. Joly, Robust high order non-conforming finite element formulation for time domain fluid-structure interaction, Journal of Computational Acoustics 13, 403–431 (2005).CrossRefGoogle Scholar
  56. 56.
    R. W. Graves, Simulating seismic wave propagation in 3d elastic media using staggered-grid finite differences, Bulletin of the Seismological Society of America 86, 1091–1106 (1996).Google Scholar
  57. 57.
    N. A. Kampanis, V. Dougalis, and V. Ekaterinaris, Effective computational methods for wave propagation (Chapman & Hall/CRC, Boca Raton) (2008).Google Scholar
  58. 58.
    J. F. Aubry, M. Tanter, M. Pernot, J. L. Thomas, and M. Fink, Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans, The Journal of the Acoustical Society of America 113, 84–93 (2003).CrossRefPubMedGoogle Scholar
  59. 59.
    F. Marquet, M. Pernot, J. F. Aubry, G. Montaldo, L. Marsac, M. Tanter, and M. Fink, Non-invasive transcranial ultrasound therapy based on a 3d CT scan: protocol validation and in vitro results, Physics in Medicine and Biology 54, 2597–2613 (2009).CrossRefPubMedGoogle Scholar
  60. 60.
    R. Barkmann, S. Lüsse, B. Stampa, S. Sakata, M. Heller, and C.-C. Glüer, Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo, Osteoporosis International 11, 745–755 (2000).CrossRefPubMedGoogle Scholar
  61. 61.
    S. P. Dodd, J. L. Cunningham, A. W. Miies, S. Gheduzzi, and V. F. Humphrey, An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples, Bone 40, 656–661 (2007).CrossRefPubMedGoogle Scholar
  62. 62.
    G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy, Journal of the Acoustical Society of America 123, 1694–1705 (2008).CrossRefPubMedGoogle Scholar
  63. 63.
    Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, Numerical and experimental study on the wave attenuation in bone - fdtd simulation of ultrasound propagation in cancellous bone, Ultrasonics 48, 607–612 (2008).CrossRefPubMedGoogle Scholar
  64. 64.
    F. Padilla, E. Bossy, and P. Laugier, Simulation of ultrasound propagation through three-dimensional trabecular bone structures: comparison with experimental data, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications and Review Papers 45, 6496–6500 (2006).Google Scholar
  65. 65.
    E. Bossy, P. Laugier, F. Peyrin, and F. Padilla, Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur, Journal of the Acoustical Society of America 122, 2469–2475 (2007).CrossRefPubMedGoogle Scholar
  66. 66.
    S. Gheduzzi, S. P. Dodd, A. W. Miles, V. F. Humphrey, and J. L. Cunningham, Numerical and experimental simulation of the effect of long bone fracture healing stages on ultrasound transmission across an idealized fracture, Journal of the Acoustical Society of America 126, 887–894 (2009).CrossRefPubMedGoogle Scholar
  67. 67.
    V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones, Journal of the Acoustical Society of America 121, 3907–3921 (2007).CrossRefPubMedGoogle Scholar
  68. 68.
    A. Mahmoud, D. Cortes, A. Abaza, H. Ammar, M. Hazey, P. Ngan, R. Crout, and O. Mukdadi, Noninvasive assessment of human jawbone using ultrasonic guided waves, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1316–1327 (2008).CrossRefGoogle Scholar
  69. 69.
    V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, Ultrasonic monitoring of bone fracture healing, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1243–1255 (2008).CrossRefGoogle Scholar
  70. 70.
    G. Haiat, F. Padilla, and P. Laugier, Sensitivity of qus parameters to controlled variations of bone strength assessed with a cellular model, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1488–1496 (2008).CrossRefGoogle Scholar
  71. 71.
    A. S. Aula, J. Toyras, M. A. Hakulinen, and J. S. Jurvelin, Effect of bone marrow on acoustic properties of trabecular bone-3d finite difference modeling study, Ultrasound in Medicine and Biology 35, 308–318 (2009).CrossRefPubMedGoogle Scholar
  72. 72.
    M. Pakula, F. Padilla, and P. Laugier, Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz, Journal of the Acoustical Society of America 126, 3301–3310 (2009).Google Scholar
  73. 73.
    G. Haiat, F. Padilla, R. Barkmann, C. C. Gluer, and P. Laugier, Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants, Ultrasonics 44, E289–E294 (2006).CrossRefPubMedGoogle Scholar
  74. 74.
    A. Hosokawa, Effect of minor trabecular elements on fast and slow wave propagations through a stratified cancellous bone phantom at oblique incidence, Japanese Journal of Applied Physics 48 (2009).Google Scholar
  75. 75.
    C. Desceliers, C. Soize, Q. Grimal, M. Talmant, and S. Naili, Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: model and experiments, Journal of the Acoustical Society of America 125, 2027–2034 (2009).CrossRefPubMedGoogle Scholar
  76. 76.
    P. Moilanen, M. Talmant, V. Kilappa, P. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius, Journal of the Acoustical Society of America 124, 2364–2373 (2008).CrossRefPubMedGoogle Scholar
  77. 77.
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone, Ultrasonics 48, 598–606 (2008).CrossRefPubMedGoogle Scholar
  78. 78.
    A. Hosokawa, Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1219–1233 (2008).CrossRefGoogle Scholar
  79. 79.
    F. Padilla, Q. Grimal, and P. Laugier, Ultrasonic propagation through trabecular bone modeled as a random medium, Japanese Journal of Applied Physics 47, 4220–4222 (2008).CrossRefGoogle Scholar
  80. 80.
    L. Goossens, J. Vanderoost, S. Jaecques, S. Boonen, J. D’Hooge, W. Lauriks, and G. Van der Perre, The correlation between the sos in trabecular bone and stiffness and density studied by finite-element analysis, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1234–1242 (2008).CrossRefGoogle Scholar
  81. 81.
    G. Haiat, F. Padilla, M. Svrcekova, Y. Chevalier, D. Pahr, F. Peyrin, P. Laugier, and P. Zysset, Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach, Journal of Biomechanics 42, 2033–2039 (2009).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Institut LangevinESPCI ParisTech, CNRS UMR 7587, INSERM ERL U979Paris Cedex 05France
  2. 2.Laboratoire d’Imagerie ParametriqueUniversité Pierre et Marie Curie, CNRSParisFrance

Personalised recommendations