Guided Waves in Cortical Bone

  • Maryline TalmantEmail author
  • Josquin Foiret
  • Jean-Gabriel Minonzio


In the last decade, several experimental studies have shown that long cortical bones act as a natural waveguide at ultrasonic frequencies despite attenuation in bone material and heterogeneity in elastic and geometrical properties. Propagation in waveguides consists in a variety of dispersive waves, each one with its own frequency-dependent field distribution across the section of the waveguide. Guided waves are extensively used particularly in non destructive evaluation. Technologically adapted devices have been developed for instance for structure health monitoring. In the bone assessment field, guided waves analysis might answer to the attempt of multiple bone property determination, as cortical thickness and elasticity. These properties are in turn relevant indicators of biomechanical competence. One of the most promising recent developments in this field is the so called “axial transmission” technique.


Arrays Axial transmission Bone characterization Bone strength Clinical devices Cylindrical waveguide Elastic anisotropy Elastic waveguide Instrumentation Lamb waves Long cortical bone Material characterization Multi component signal Partial waves Signal processing Singular value decomposition 


  1. 1.
    B. A. Auld, Acoustic fields and waves in solids, 2nd ed. (Krieger, Malabar, FL, 1990), Vol. II.Google Scholar
  2. 2.
    I. A. Viktorov, Rayleigh and Lamb waves (Plenum, New York, NY, 1967).Google Scholar
  3. 3.
    J. D. Achenbach, Wave propagation in elastic solids (Elsevier, New York, NY, 1975).Google Scholar
  4. 4.
    D. Royer and E. Dieulesaint, Elastic waves in solids I: Free and guided propagation (Springer, New York, 2000).Google Scholar
  5. 5.
    F. Lefebvre, Y. Deblock, P. Campistron, D. Ahite, and J. J. Fabre, “Development of a new ultrasonic technique for bone and biomaterials in vitro characterization,” Journal of Biomedical Materials Research 63(4), 441–446 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    P. Moilanen, P. H. F. Nicholson, V. Kilappa, S. L. Cheng, and J. Timonen, “Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study,” Ultrasound in Medicine and Biology 33(2), 254–262 (2007).CrossRefPubMedGoogle Scholar
  7. 7.
    D. A. Ta, K. Huang, W. Q. Wang, Y. Y. Wang, and L. H. Le, “Identification and analysis of multimode guided waves in tibia cortical bone,” Ultrasonics 44, E279–E284 (2006).CrossRefPubMedGoogle Scholar
  8. 8.
    D. Ta, W. Q. Wang, Y. Y. Wang, L. H. Le, and Y. Q. Zhou, “Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone,” Ultrasound in Medicine and Biology 35(4), 641–652 (2009).CrossRefPubMedGoogle Scholar
  9. 9.
    A. M. Tatarinov, V. P. Egorov, and A. P. Sarvazyan, “The dual-frequency method for ultrasonic assessment of skeletal system,” Acoustical Physics 55(4–5), 665–673 (2009).CrossRefGoogle Scholar
  10. 10.
    D. E. Chimenti, “Guided waves in plates and their use in materials characterization,” Applied Mechanics Reviews 50(5), 247–284 (1997).CrossRefGoogle Scholar
  11. 11.
    D. N. Alleyne and P. Cawley, “The interaction of Lamb waves with defects,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 39(3), 381–397 (1992).CrossRefGoogle Scholar
  12. 12.
    P. Cawley and D. Alleyne, “The use of Lamb waves for the long range inspection of large structures,” Ultrasonics 34(2–5), 287–290 (1996).CrossRefGoogle Scholar
  13. 13.
    S. Dahmen, H. Ketata, M. H. Ben Ghozlen, and B. Hosten, “Elastic constants measurement of anisotropic Olivier wood plates using air-coupled transducers generated Lamb wave and ultrasonic bulk wave,” Ultrasonics 50(4–5), 502–507 (2010).CrossRefPubMedGoogle Scholar
  14. 14.
    J. L. Dean, C. Trillo, A. F. Doval, and J. L. Fernandez, “Determination of thickness and elastic constants of aluminum plates from full-field wavelength measurements of single-mode narrowband Lamb waves,” The Journal of the Acoustical Society of America 124(3), 1477–1489 (2008).CrossRefPubMedGoogle Scholar
  15. 15.
    D. Alleyne and P. Cawley, “A 2-dimensional Fourier-transform method for the measurement of propagating multimode signals,” The Journal of the Acoustical Society of America 89(3), 1159–1168 (1991).CrossRefGoogle Scholar
  16. 16.
    M. Niethammer, L. J. Jacobs, J. M. Qu, and J. Jarzynski, “Time-frequency representations of Lamb waves,” The Journal of the Acoustical Society of America 109(5), 1841–1847 (2001).CrossRefPubMedGoogle Scholar
  17. 17.
    R. A. Abram, “Coupled-mode formalism for elastic waveguides,” Journal of Physics D-Applied Physics 7(10), 1329–1335 (1974).CrossRefGoogle Scholar
  18. 18.
    V. B. Galanenko, “On coupled modes theory of two-dimensional wave motion in elastic waveguides with slowly varying parameters in curvilinear orthogonal coordinates,” The Journal of the Acoustical Society of America 103(4), 1752–1762 (1998).CrossRefGoogle Scholar
  19. 19.
    V. Pagneux and A. Maurel, “Lamb wave propagation in elastic waveguides with variable thickness,” Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences 462(2068), 1315–1339 (2006).CrossRefGoogle Scholar
  20. 20.
    D. E. Chimenti and B. A. Auld, “Micro and macrostructural dispersion of guided waves in solids,” Wave Motion 21, 101–114 (1995).CrossRefGoogle Scholar
  21. 21.
    H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character 93(648), 114–128 (1917).Google Scholar
  22. 22.
    E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: A 2D simulation study,” The Journal of the Acoustical Society of America 112(1), 297–307 (2002).CrossRefPubMedGoogle Scholar
  23. 23.
    R. D. Mindlin, “Waves and vibrations in isotropic elastic plates,” in Structural Mechanics, J.N. Goodier and N. J. Hoff, eds. (Pergamon, New York, NY, 1960), pp. 199–232.Google Scholar
  24. 24.
    B. A. Auld and G. S. Kino, “Normal mode theory for acoustic waves and its application to interdigital transducer,” IEEE Transactions on Electron Devices ED18(10), 898–908 (1971).Google Scholar
  25. 25.
    R. L. Weaver and Y. H. Pao, “Spectra of transient waves in elastic plates,” The Journal of the Acoustical Society of America 72(6), 1933–1941 (1982).CrossRefGoogle Scholar
  26. 26.
    I. Nunez, R. K. Ing, C. Negreira, and M. Fink, “Transfer and Green functions based on modal analysis for Lamb waves generation,” The Journal of the Acoustical Society of America 107(5), 2370–2378 (2000).CrossRefPubMedGoogle Scholar
  27. 27.
    H. Bai, J. Zhu, A. H. Shah, and N. Popplewell, “Three-dimensional steady state Green function for a layered isotropic plate,” Journal of Sound and Vibration 269(1–2), 251–271 (2004).CrossRefGoogle Scholar
  28. 28.
    L. Moreau and M. Castaings, “The use of an orthogonality relation for reducing the size of finite element models for 3D guided waves scattering problems,” Ultrasonics 48(5), 357–366 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    D. C. Gazis, “3-Dimensional investigation of the propagation of waves in hollow circular cylinder.1. Analytical foundation,” The Journal of the Acoustical Society of America 31(5), 568–573 (1959).CrossRefGoogle Scholar
  30. 30.
    J. L. Rose, Acoustic waves in solid media (Cambridge University Press, Cambridge, UK, 1999).Google Scholar
  31. 31.
    M. G. Silk and K. F. Bainton, “Propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves,” Ultrasonics 17(1), 11–19 (1979).CrossRefGoogle Scholar
  32. 32.
    J. Davies and P. Cawley, “The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56(4), 759–771 (2009).CrossRefGoogle Scholar
  33. 33.
    J. Li and J. L. Rose, “Excitation and propagation of non-axisymmetric guided waves in a hollow cylinder,” Journal of the Acoustical Society of America 109(2), 457–464 (2001).CrossRefPubMedGoogle Scholar
  34. 34.
    J. J. Ditri and J. L. Rose, “Excitation of guided elastic wave modes in hollow cylinders by applied surface tractions,” Journal of Applied Physics 72(7), 2589–2597 (1992).CrossRefGoogle Scholar
  35. 35.
    R. B. Martin, D. B. Burr, and N. A. Sharkey, Skeletal tissue mechanics (Springer-Verlag, New York, 1998).Google Scholar
  36. 36.
    R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice, “A continuous wave technique for the mesurement of the elastic properties of cortical bone,” Journal of Biomechanics 17, 349–361 (1984).CrossRefPubMedGoogle Scholar
  37. 37.
    V. Ricos, D. R. Pedersen, T. D. Brown, R. B. Ashman, C. T. Rubin, and R. A. Brand, “Effects of anisotropy and material axis registration on computed stress and strain distributions in the turkey ulna,” Journal of Biomechanics, 261–267 (1996) 29(2)CrossRefPubMedGoogle Scholar
  38. 38.
    S.C. Cowin and R.T. Hart, “Errors in the orientation of the principal stress axes if bone tissue is modeled as isotropic,” Journal of Biomechanics, 349–352 (1990) 23(4)CrossRefPubMedGoogle Scholar
  39. 39.
    E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” The Journal of the Acoustical Society of America 115(5), 2314–2324 (2004).CrossRefPubMedGoogle Scholar
  40. 40.
    Y. Li and R. B. Thompson, “Influence of anisotropy on the dispersion characteristics of guided ultrasonic plate modes,” The Journal of the Acoustical Society of America 87(5), 1911–1931 (1990).CrossRefGoogle Scholar
  41. 41.
    W. Lin and L. M. Keer, “A study of Lamb waves in anisotropic plates,” The Journal of the Acoustical Society of America 92(2), 888–894 (1992).CrossRefGoogle Scholar
  42. 42.
    S. P. Pelts and J. L. Rose, “Source influence parameters on elastic guided waves in an orthotropic plate,” The Journal of the Acoustical Society of America 99(4), 2124–2129 (1996).CrossRefGoogle Scholar
  43. 43.
    L. P. Solie and B. A. Auld, “Elastic waves in free anisotropic plates,” The Journal of the Acoustical Society of America 54(1), 50–65 (1973).CrossRefGoogle Scholar
  44. 44.
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “Velocity dispersion of guided waves propagating in a free gradient elastic plate: Application to cortical bone,” The Journal of the Acoustical Society of America 125(5), 3414–3427 (2009).CrossRefPubMedGoogle Scholar
  45. 45.
    Z. Q. Su, L. Ye, and Y. Lu, “Guided Lamb waves for identification of damage in composite structures: A review,” Journal of Sound and Vibration 295(3–5), 753–780 (2006).CrossRefGoogle Scholar
  46. 46.
    M. Castaings and B. Hosten, “Lamb and SH waves generated and detected by air-coupled ultrasonic transducers in composite material plates,” Ndt & E International 34(4), 249–258 (2001).CrossRefGoogle Scholar
  47. 47.
    Z. Q. Guo, J. D. Achenbach, and S. Krishnaswamy, “EMAT generation and laser detection of single lamb wave modes,” Ultrasonics 35(6), 423–429 (1997).CrossRefGoogle Scholar
  48. 48.
    J. G. Minonzio, M. Talmant, and P. Laugier, “Guided wave phase velocity measurement using multi-emitter and multi-receiver arrays in the axial transmission configuration,” The Journal of the Acoustical Society of America 127(5) (2010).Google Scholar
  49. 49.
    C. Prada and M. Fink, “Separation of interfering acoustic scattered signals using the invariants of the time-reversal operator. Application to Lamb waves characterization,” The Journal of the Acoustical Society of America 104(2), 801–807 (1998).CrossRefGoogle Scholar
  50. 50.
    D. Hans, S. K. Srivastav, C. Singal, R. Barkmann, C. F. Njeh, E. Kantorovich, C. C. Gluer, and H. K. Genant, “Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture?,” Journal of Bone and Mineral Research 14(4), 644–651 (1999).CrossRefPubMedGoogle Scholar
  51. 51.
    P. Moilanen, P. H. F. Nicholson, T. Karkkainen, Q. Wang, J. Timonen, and S. Cheng, “Assessment of the tibia using ultrasonic guided waves in pubertal girls,” Osteoporosis International 14(12), 1020–1027 (2003).CrossRefPubMedGoogle Scholar
  52. 52.
    M. Maata, P. Moilanen, P. Nicholson, S. L. Cheng, J. Timonen, and T. Jamsa, “Correlation of tibial low-frequency ultrasound velocity with femoral radiographic measurements and Bmd in elderly women,” Ultrasound in Medicine and Biology 35(6), 903–911 (2009).CrossRefGoogle Scholar
  53. 53.
    E. Bossy, M. Talmant, F. Peyrin, L. Akrout, P. Cloetens, and P. Laugier, “An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity,” Journal of Bone and Mineral Research 19(9), 1548–1556 (2004).CrossRefPubMedGoogle Scholar
  54. 54.
    W. Sachse and Y. H. Pao, “Determination of phase and group velocities of dispersive waves in solids,” Journal of Applied Physics 49(8), 4320–4327 (1978).CrossRefGoogle Scholar
  55. 55.
    W. H. Prosser, M. D. Seale, and B. T. Smith, “Time-frequency analysis of the dispersion of Lamb modes,” Journal of the Acoustic Society of America 105(5), 2669–2676 (1999).CrossRefGoogle Scholar
  56. 56.
    L. De Marchi, A. Marzani, S. Caporale, and N. Speciale, “Ultrasonic guided-waves characterization with warped frequency transforms,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56(10), 2232–2240 (2009).CrossRefGoogle Scholar
  57. 57.
    H. Kuttig, M. Niethammer, S. Hurlebaus, and L. J. Jacobs, “Model-based analysis of dispersion curves using chirplets,” The Journal of the Acoustical Society of America 119(4), 2122–2130 (2006).CrossRefPubMedGoogle Scholar
  58. 58.
    V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound in Medicine and Biology 32(5), 693–708 (2006).CrossRefPubMedGoogle Scholar
  59. 59.
    V. D. Vrabie, J. I. Mars, and J. L. Lacoume, “Modified singular value decomposition by means of independent component analysis,” Signal Processing 84(3), 645–652 (2004).CrossRefGoogle Scholar
  60. 60.
    Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of exponentially damped undamped sinusoids in noise,” IEEE Transactions on Acoustics Speech and Signal Processing 38(5), 814–824 (1990).CrossRefGoogle Scholar
  61. 61.
    D. W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple sinusoids – Making linear prediction perform like maximum-likelihood,” Proceedings of the IEEE 70(9), 975–989 (1982).CrossRefGoogle Scholar
  62. 62.
    J. Vollmann, R. Breu, and J. Dual, “High-resolution analysis of the complex wave spectrum in a cylindrical shell containing a viscoelastic medium.2. Experimental results versus theory,” The Journal of the Acoustical Society of America 102(2), 909–920 (1997).CrossRefGoogle Scholar
  63. 63.
    P. Moilanen, P. H. F. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Measuring guided waves in long bones: Modeling and experiments in free and immersed plates,” Ultrasound in Medicine and Biology 32(5), 709–719 (2006).CrossRefPubMedGoogle Scholar
  64. 64.
    M. Cheney, “The linear sampling method and the MUSIC algorithm,” Inverse Problems 17(4), 591–595 (2001).CrossRefGoogle Scholar
  65. 65.
    T. T. Wu and Y. H. Liu, “Inverse determinations of thickness and elastic properties of a bonding layer using laser-generated surface waves,” Ultrasonics 37(1), 23–30 (1999).CrossRefGoogle Scholar
  66. 66.
    W. M. Gao, C. Glorieux, and J. Thoen, “Laser ultrasonic study of Lamb waves: Determination of the thickness and velocities of a thin plate,” International Journal of Engineering Science 41(2), 219–228 (2003).CrossRefGoogle Scholar
  67. 67.
    D. A. Hutchins, K. Lundgren, and S. B. Palmer, “A laser study of transient Lamb waves in thin materials,” The Journal of the Acoustical Society of America 85(4), 1441–1448 (1989).CrossRefGoogle Scholar
  68. 68.
    D. Clorennec, C. Prada, and D. Royer, “Local and noncontact measurements of bulk acoustic wave velocities in thin isotropic plates and shells using zero group velocity Lamb modes,” Journal of Applied Physics 101(3) (2007).Google Scholar
  69. 69.
    J. Vishnuvardhan, C. V. Krishnamurthy, and K. Balasubramaniam, “Blind inversion method using Lamb waves for the complete elastic property characterization of anisotropic plates,” The Journal of the Acoustical Society of America 125(2), 761–771 (2009).CrossRefPubMedGoogle Scholar
  70. 70.
    I. A. Veres and M. B. Sayir, “Wave propagation in a wooden bar,” Ultrasonics 42(1–9), 495–499 (2004).CrossRefPubMedGoogle Scholar
  71. 71.
    C. Desceliers, C. Soize, Q. Grimal, M. Talmant, and S. Naili, “Determination of the random anisotropic elasticity layer using transient wave propagation in a fluid-solid multilayer: Model and experiments,” Journal of the Acoustical Society of America 125(4), 2027–2034 (2009).CrossRefPubMedGoogle Scholar
  72. 72.
    P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. L. Cheng, “Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application,” Physiological Measurement 23(4), 755–768 (2002).CrossRefPubMedGoogle Scholar
  73. 73.
    E. Camus, M. Talmant, G. Berger, and P. Laugier, “Analysis of the axial transmission technique for the assessment of skeletal status,” The Journal of the Acoustical Society of America 108(6), 3058–3065 (2000).CrossRefPubMedGoogle Scholar
  74. 74.
    P. Nicholson, S. Cheng, and J. Timonen, “Thickness effects on axial ultrasound velocity in bone,” Osteoporosis International 12(11), 987 (2001).CrossRefPubMedGoogle Scholar
  75. 75.
    S. Prevrhal, T. Fuerst, B. Fan, C. Njeh, D. Hans, M. Uffmann, S. Srivastav, and H. K. Genant, “Quantitative ultrasound of the tibia depends on both cortical density and thickness,” Osteoporosis International 12(1), 28–34 (2001).CrossRefPubMedGoogle Scholar
  76. 76.
    C. F. Njeh, D. Hans, C. Wu, E. Kantorovich, M. Sister, T. Fuerst, and H. K. Genant, “An in vitro investigation of the dependence on sample thickness of the speed of sound along the specimen,” Medical Engineering & Physics 21(9), 651–659 (1999).CrossRefGoogle Scholar
  77. 77.
    P. Moilanen, V. Kilappa, P. H. F. Nicholson, J. Timonen, and S. Cheng, “Thickness sensitivity of ultrasound velocity in long bone phantoms,” Ultrasound in Medicine & Biology 30(11), 1517–1521 (2004).CrossRefGoogle Scholar
  78. 78.
    A. Tatarinov, N. Sarvazyan, and A. Sarvazyan, “Use of multiple acoustic wave modes for assessment of long bones: Model study,” Ultrasonics 43(8), 672–680 (2005).CrossRefPubMedGoogle Scholar
  79. 79.
    K. I. Lee and S. W. Yoon, “Feasibility of bone assessment with leaky Lamb waves, in bone phantoms and a bovine tibia,” The Journal of the Acoustical Society of America 115(6), 3210–3217 (2004).CrossRefPubMedGoogle Scholar
  80. 80.
    M. Sasso, M. Talmant, G. Haiat, S. Naili, and P. Laugier, “Analysis of the Most Energetic Late Arrival in Axially Transmitted Signals in Cortical Bone,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56(11), 2463–2470 (2009).CrossRefGoogle Scholar
  81. 81.
    E. Bossy, M. Talmant, M. Defontaine, F. Patat, and P. Laugier, “Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: A validation on test materials,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 51(1), 71–79 (2004).CrossRefGoogle Scholar
  82. 82.
    K. Raum, I. Leguerney, F. Chandelier, E. Bossy, M. Talmant, A. Saied, F. Peyrin, and P. Laugier, “Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements,” Ultrasound in Medicine and Biology 31(9), 1225–1235 (2005).CrossRefPubMedGoogle Scholar
  83. 83.
    M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, T. Timonen, M. Talmant, S. Cheng, and P. Laugier, “Comparison of three ultrasonic axial transmission methods for bone assessment,” Ultrasound in Medicine and Biology 31(5), 633–642 (2005).CrossRefPubMedGoogle Scholar
  84. 84.
    H. Sievanen, S. Cheng, S. Ollikainen, and K. Uusi-Rasi, “Ultrasound velocity and cortical bone characteristics in vivo,” Osteoporosis International 12(5), 399–405 (2001).CrossRefPubMedGoogle Scholar
  85. 85.
    S. C. Lee, B. S. Coan, and M. L. Bouxsein, “Tibial ultrasound velocity measured in situ predicts the material properties of tibial cortical bone,” Bone 21(1), 119–125 (1997).CrossRefPubMedGoogle Scholar
  86. 86.
    M. Hudelmaier, V. Kuhn, E. M. Lochmuller, H. Well, M. Priemel, T. M. Link, and F. Eckstein, “Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)?,” Osteoporosis International 15(5), 375–381 (2004).CrossRefPubMedGoogle Scholar
  87. 87.
    M. Weiss, A. Ben-Shlomo, H. P., and S. Ish-Shalom, “Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius,” Osteoporosis International 11, 411–416 (2000).Google Scholar
  88. 88.
    K. M. Knapp, G. M. Blake, T. D. Spector, and I. Fogelman, “Multisite quantitative ultrasound: Precision, age- and menopause-related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry,” Osteoporosis International 12(6), 456–464 (2001).CrossRefPubMedGoogle Scholar
  89. 89.
    D. Hans, L. Genton, S. Allaoua, C. Pichard, and D. O. Slosman, “Hip fracture discrimination study - QUS of the radius and the calcaneum,” Journal of Clinical Densitometry 6(2), 163–172 (2003).CrossRefPubMedGoogle Scholar
  90. 90.
    M. Talmant, S. Kolta, C. Roux, D. Haguenauer, I. Vedel, B. Cassou, E. Bossy, and P. Laugier, “In Vivo Performance Evaluation of Bi-Directional Ultrasonic Axial Transmission for Cortical Bone Assessment,” Ultrasound in Medicine and Biology 35(6), 912–919 (2009).CrossRefPubMedGoogle Scholar
  91. 91.
    P. Moilanen, M. Talmant, P. H. F. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments,” The Journal of the Acoustical Society of America 122(4), 2439–2445 (2007).CrossRefPubMedGoogle Scholar
  92. 92.
    M. Hapsara and D. D. Iliescu, “Lamb waves detection in a bovine cortical tibia using scanning laser vibrometry - art. no. 69200N,” in Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, S. A. McAleavey and J. Dhooge, eds. (Spie-Int Soc Optical Engineering, Bellingham, WA, 2008), pp. N9200–N9200.Google Scholar
  93. 93.
    P. Moilanen, M. Talmant, V. Bousson, P. H. F. Nicholson, S. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: Two-dimensional simulations of in vitro experiments,” The Journal of the Acoustical Society of America 122(3), 1818–1826 (2007).CrossRefPubMedGoogle Scholar
  94. 94.
    D. Royer, D. Clorennec, and C. Prada, “Lamb mode spectra versus the Poisson ratio in a free isotropic elastic plate,” The Journal of the Acoustical Society of America 125(6), 3683–3687 (2009).CrossRefPubMedGoogle Scholar
  95. 95.
    K. Macocco, Q. Grimal, S. Naili, and C. Soize, “Elastoacoustic model with uncertain mechanical properties for ultrasonic wave velocity prediction: Application to cortical bone evaluation,” The Journal of the Acoustical Society of America 119(2), 729–740 (2006).CrossRefPubMedGoogle Scholar
  96. 96.
    R. Barkmann, S. Lusse, B. Stampa, S. Sakata, M. Heller, and C. C. Gluer, “Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo,” Osteoporosis International 11(9), 745–755 (2000).CrossRefPubMedGoogle Scholar
  97. 97.
    V. Le Floch, G. M. Luo, J. J. Kaufman, and R. S. Siffert, “Ultrasonic Assessment of the Radius in Vitro,” Ultrasound in Medicine and Biology 34(12), 1972–1979 (2008).CrossRefPubMedGoogle Scholar
  98. 98.
    J. Grondin, Q. Grimal, K. Engelke, and P. Laugier, “Potential of First Arriving Signal to Assess Cortical Bone Geometry at the Hip with QUS: A Model Based Study,” Ultrasound in Medicine & Biology 36(4), 656–666 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Maryline Talmant
    • 1
    Email author
  • Josquin Foiret
    • 1
  • Jean-Gabriel Minonzio
    • 1
  1. 1.Laboratoire d’Imagerie ParametriqueUniversité Pierre et Marie Curie, CNRS UMR 7623ParisFrance

Personalised recommendations