Advertisement

Scattering by Trabecular Bone

  • Frédéric PadillaEmail author
  • Keith Wear
Chapter

Abstract

This chapter reviews models for scattering of ultrasound by cancellous bone, methods for measuring scattering, and empirical results. Theory and measurements are presented for the dependence of backscatter on frequency and mean trabecular thickness. Additional topics discussed include the inverse problem (that is, estimating cancellous bone properties based on scattering measurements), the extent of multiple scattering in cancellous bone, and the role of scattering in determining attenuation. The potential advantages and intrinsic difficulties of backscatter as a clinical measurement are discussed. Results of clinical trials are presented.

Keywords

Anisotropy Apparent backscatter coefficient Attenuation Role of scattering Autocorrelation Backcatter Backscatter coefficient measurement Binary mixture model Born approximation Broadband Ultrasound Backscatter Faran cylinder model Multiple scattering Shear waves Thin cylinder model Trabecular thickness Velocity dispersion Weak scattering model 

Notes

Acknowledgments

We acknowledge funding support from the US Food and Drug Administration Office of Women’s Health.

References

  1. 1.
    K. N. Apostolopoulos and D. D. Deligianni, “Influence of microarchitecture alterations on ultrasonic backscattering in an experimental simulation of bovine cancellous bone aging,” Journal of the Acoustical Society of America 123(2), 1179–1187 (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    A. Aubry, A. Derode, and F. Padilla, “Local measurements of the diffusion constant in multiple scattering media: application to human trabecular bone imaging,” Applied Physics Letters 92, 124101–124101/124103 (2008).Google Scholar
  3. 3.
    S. Chaffai, F. Peyrin, S. Nuzzo, R. Porcher, G. Berger, and P. Laugier, “Ultrasonic characterization of human cancellous bone using transmission and backscatter measurements: relationships to density and microstructure,” Bone 30(1), 229–237 (2002).CrossRefPubMedGoogle Scholar
  4. 4.
    S. Chaffaï, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” Journal of the Acoustical Society of America 108(5), 2403–2411 (2000).CrossRefPubMedGoogle Scholar
  5. 5.
    D. D. Deligianni and K. N. Apostolopoulos, “Characterization of dense bovine cancellous bone tissue microstructure by ultrasonic backscattering using weak scattering models,” Journal of the Acoustical Society of America 122(2), 1180–1190 (2007).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Derode, V. Mamou, F. Padilla, F. Jenson, and P. Laugier, “Dynamic coherent backscattering in a heterogeneous absorbing medium: application to human trabecular bone characterization,” Applied Physics Letters 87, 114101–114101-3 (2005).Google Scholar
  7. 7.
    X. Guo, D. Zhang, and X. Gong, “Evaluation of ultrasonic scattering in human cancellous bone by using a binary mixture model,” Physics in Medicine and Biology 52(1), 29–40 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    M. A. Hakulinen, J. S. Day, J. Toyras, M. Timonen, H. Kroger, H. Weinans, I. Kiviranta, and J. S. Jurvelin, “Prediction of density and mechanical properties of human trabecular bone in vitro by using ultrasound transmission and backscattering measurements at 0.2–6.7 MHz frequency range,” Physics in Medicine and Biology 50(8), 1629–1642 (2005).CrossRefPubMedGoogle Scholar
  9. 9.
    M. A. Hakulinen, J. Toyras, S. Saarakkala, J. Hirvonen, H. Kroger, and J. S. Jurvelin, “Ability of ultrasound backscattering to predict mechanical properties of bovine trabecular bone,” Ultrasound in Medicine and Biology 30(7), 919–927 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    B. K. Hoffmeister, C. I. Jones, 3rd, G. J. Caldwell, and S. C. Kaste, “Ultrasonic characterization of cancellous bone using apparent integrated backscatter,” Physics in Medicine and Biology 51(11), 2715–2727 (2006).CrossRefPubMedGoogle Scholar
  11. 11.
    B. K. Hoffmeister, S. A. Whitten, and J. Y. Rho, “Low-megahertz ultrasonic properties of bovine cancellous bone,” Bone 26(6), 635–642 (2000).CrossRefPubMedGoogle Scholar
  12. 12.
    F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. D. Laredo, and P. Laugier, “In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density,” Journal of the Acoustical Society of America 119(1), 654–663 (2006).CrossRefPubMedGoogle Scholar
  13. 13.
    J. P. Karjalainen, J. Toyras, O. Riekkinen, M. Hakulinen, and J. S. Jurvelin, “Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone,” Ultrasound in Medicine and Biology 35(8), 1376–1384 (2009).CrossRefPubMedGoogle Scholar
  14. 14.
    K. Kitamura, H. Nishikouri, S. Ueha, S. Kimura, and N. Ohtomo, “Estimation of trabecular bone axis for characterization of cancellous bone using scattered ultrasonic wave,” Japan Journal of Applied Physics 37, 3082–3087 (1998).CrossRefGoogle Scholar
  15. 15.
    K. Kitamura, H. Pan, S. Ueha, S. Kimura, and N. Ohtomo, “Ultrasonic scattering study of cancellous bone for osteoporosis diagnosis,” Japan Journal of Applied Physics 35, 3156–3162 (1996).CrossRefGoogle Scholar
  16. 16.
    P. H. F. Nicholson, R. Strelitzki, R. O. Cleveland, and M. L. Bouxsein, “Scattering of ultrasound in cancellous bone:predictions from a theoretical model,” Journal of Biomechanics 33, 503–506 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    F. Padilla, F. Jenson, and P. Laugier, “Estimation of trabecular thickness using ultrasonic backcatter,” Ultrason Imaging 28(1), 3–22 (2006).PubMedGoogle Scholar
  18. 18.
    O. Riekkinen, M. A. Hakulinen, M. J. Lammi, J. S. Jurvelin, A. Kallioniemi, and J. Toyras, “Acoustic properties of trabecular bone – relationships to tissue composition,” Ultrasound in Medicine and Biology 33(9), 1438–1444 (2007).CrossRefPubMedGoogle Scholar
  19. 19.
    O. Riekkinen, M. A. Hakulinen, J. Toyras, and J. S. Jurvelin, “Spatial variation of acoustic properties is related with mechanical properties of trabecular bone,” Physics in Medicine and Biology 52(23), 6961–6968 (2007).CrossRefPubMedGoogle Scholar
  20. 20.
    V. Roberjot, P. Laugier, P. Droin, P. Giat, and G. Berger, “Measurement of integrated backscatter coefficient of trabecular bone,” presented at the IEEE Ultrasonics Symposium, San Antonio, TX, 1996.Google Scholar
  21. 21.
    D. Ta, W. Wang, K. Huang, Y. Wang, and L. H. Le, “Analysis of frequency dependence of ultrasonic backscatter coefficient in cancellous bone,” Journal of the Acoustical Society of America 124(6), 4083–4090 (2008).CrossRefPubMedGoogle Scholar
  22. 22.
    K. A. Wear, “Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment,” Journal of the Acoustical Society of America 106(6), 3659–3664 (1999).CrossRefPubMedGoogle Scholar
  23. 23.
    K. A. Wear, “Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation,” Journal of the Acoustical Society of America 107(6), 3474–3479 (2000).CrossRefPubMedGoogle Scholar
  24. 24.
    K. A. Wear, “Fundamental precision limitations for measurements of frequency dependence of backscatter: applications in tissue-mimicking phantoms and trabecular bone,” Journal of the Acoustical Society of America 110(6), 3275–3282 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    K. A. Wear, “Measurement of dependence of backscatter coefficient from cylinders on frequency and diameter using focused transducers – with applications in trabecular bone,” Journal of the Acoustical Society of America 115(1), 66–72 (2004).CrossRefPubMedGoogle Scholar
  26. 26.
    K. A. Wear and D. W. Armstrong, “The relationship between ultrasonic backscatter and bone mineral density in human calcaneus,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 47(4), 777–780 (2000).CrossRefGoogle Scholar
  27. 27.
    K. A. Wear and D. W. Armstrong, “Relationship among calcaneal backscatter, attenuation, sound speed, hip bone mineral density, and age in normal adult women,” Journal of the Acoustical Society of America 110(1), 573–578 (2001).CrossRefPubMedGoogle Scholar
  28. 28.
    K. A. Wear and A. Laib, “The dependence of ultrasonic backscatter on trabecular thickness in human calcaneus: theoretical and experimental results,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 50(8), 979–986 (2003).CrossRefGoogle Scholar
  29. 29.
    K. A. Wear and B. S. Garra, “Assessment of bone density using ultrasonic backscatter,” Ultrasound in Medicine and Biology 24(5), 689–695 (1998).CrossRefPubMedGoogle Scholar
  30. 30.
    C. Roux, V. Roberjot, R. Porcher, S. Kolta, M. Dougados, and P. Laugier, “Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis,” Journal of Bone and Mineral Research 16(7), 1353–1362 (2001).CrossRefPubMedGoogle Scholar
  31. 31.
    B. S. Garra, M. Locher, S. Felker, and K. A. Wear, “Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: methodology and preliminary results,” Ultrasound in Medicine and Biology 35(1), 165–168 (2009).CrossRefPubMedGoogle Scholar
  32. 32.
    F. Padilla, F. Jenson, V. Bousson, F. Peyrin, and P. Laugier, “Relationships of trabecular bone structure with quantitative ultrasound parameters: in vitro study on human proximal femur using transmission and backscatter measurements,” Bone 42(6), 1193–1202 (2008).CrossRefPubMedGoogle Scholar
  33. 33.
    J. Litniewski, “Determination of the elasticity coefficient for a single trabecula of a cancellous bone: scanning acoustic microscopy approach,” Ultrasound in Medicine and Biology 31(10), 1361–1366 (2005).CrossRefPubMedGoogle Scholar
  34. 34.
    “Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis,” American Journal of Medicine 94(6), 646–650 (1993).Google Scholar
  35. 35.
    M. Hudelmaier, A. Kollstedt, E. M. Lochmuller, V. Kuhn, F. Eckstein, and T. M. Link, “Gender differences in trabecular bone architecture of the distal radius assessed with magnetic resonance imaging and implications for mechanical competence,” Osteoporosis International 16(9), 1124–1133 (2005).CrossRefPubMedGoogle Scholar
  36. 36.
    A. M. Parfitt, C. H. E. Mathews, A. R. Villanueva, M. Kleerekoper, B. Frame, and D. S. Rao, “Relationships between surface, volume and thickness of iliac trabecular bone in aging and in osteoporosis,” Journal of Clinical Investigation 72, 1396–1409 (1983).CrossRefPubMedGoogle Scholar
  37. 37.
    T. Steiniche, P. Christiansen, A. Vesterby, C. Hasling, R. Ullerup, L. Mosekilde, and F. Melsen, “Marked changes in iliac crest bone structure in postmenopausal osteoporotic patients without any signs of disturbed bone remodeling or balance,” Bone 15(1), 73–79 (1994).CrossRefPubMedGoogle Scholar
  38. 38.
    F. Jenson, F. Padilla, and P. Laugier, “Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model,” Ultrasound in Medicine and Biology 29(3), 455–464 (2003).CrossRefPubMedGoogle Scholar
  39. 39.
    K. A. Wear, “Mechanisms for attenuation in cancellous-bone-mimicking phantoms,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55(11), 2418–2425 (2008).CrossRefGoogle Scholar
  40. 40.
    G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” Journal of the Acoustical Society of America 124(6), 4047–4058 (2008).CrossRefPubMedGoogle Scholar
  41. 41.
    F. Padilla, F. Jenson, and P. Laugier, “Influence of the precision of spectral backscatter measurements on the estimation of scatterers size in cancellous bone,” Ultrasonics 44 (Suppl 1), e57–60 (2006).CrossRefPubMedGoogle Scholar
  42. 42.
    K. A. Wear, “The effect of phase cancellation on estimates of broadband ultrasound attenuation and backscatter coefficient in human calcaneus in vitro,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 384–390 (2008).CrossRefGoogle Scholar
  43. 43.
    J. J. Faran, “Sound scattering by solid cylinders and spheres,” Journal of the Acoustical Society of America 23(4), 405–418 (1951).CrossRefGoogle Scholar
  44. 44.
    D. Ulrich, B. van Rietbergen, A. Laib, and P. Ruegsegger, “The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone,” Bone 25(1), 55–60 (1999).CrossRefPubMedGoogle Scholar
  45. 45.
    K. A. Wear, “Ultrasonic attenuation in parallel-nylon-wire cancellous-bone-mimicking phantoms,” Journal of the Acoustical Society of America 124(6), 4042–4046 (2008).CrossRefPubMedGoogle Scholar
  46. 46.
    J. Litniewski, A. Nowicki, and P. A. Lewin, “Semi-empirical bone model for determination of trabecular structure properties from backscattered ultrasound,” Ultrasonics 49(6–7), 505–513 (2009).CrossRefPubMedGoogle Scholar
  47. 47.
    K. A. Wear, “The dependencies of phase velocity and dispersion on trabecular thickness and spacing in trabecular bone-mimicking phantoms,” Journal of the Acoustical Society of America 118(2), 1186–1192 (2005).CrossRefPubMedGoogle Scholar
  48. 48.
    K. A. Wear and G. R. Harris, “Frequency dependence of backscatter from thin, oblique, finite-length cylinders measured with a focused transducer-with applications in cancellous bone,” Journal of the Acoustical Society of America 124(5), 3309–3314 (2008).CrossRefPubMedGoogle Scholar
  49. 49.
    D. J. Coleman, M. J. Rondeau, R. H. Silverman, R. Folberg, V. Rummelt, S. M. Woods, and F. L. Lizzi, “Correlation of microcirculation architecture with ultrasound backscatter parameters of uveal melanoma,” European Journal of Ophthalmology 5(2), 96–106 (1995).PubMedGoogle Scholar
  50. 50.
    E. J. Feleppa, A. Kalisz, J. B. Sokil-Melgar, F. L. Lizzi, Tian-Liu, A. L. Rosado, M. C. Shao, W. R. Fair, Yu-Wang, M. S. Cookson, and V. E. Reuter, “Typing of prostate tissue by ultrasonic spectrum analysis,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 43(4), 609–619 (1996).Google Scholar
  51. 51.
    T. J. Hall, M. F. Insana, L. A. Harrison, and G. G. Cox, “Ultrasonic measurement of glomerular diameters in normal adult humans,” Ultrasound in Medicine and Biology 22(8), 987–997 (1996).CrossRefPubMedGoogle Scholar
  52. 52.
    M. F. Insana and D. G. Brown, “Acoustic scattering theory applied to soft biological tissues,” in Ultrasonic Scattering in Biological Tissues, K. K. Shung and G. A. Thieme, eds. (CRC Press, Boca Raton, FL, 1993).Google Scholar
  53. 53.
    F. L. O. Lizzi, M.; Feleppa, E. J.; Rorke, M. C.; Yaremko, M. M., “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE-Transactions-on-Ultrasonics,-Ferroelectrics-and-Frequency-Control 34(3), 319–329 (1986).Google Scholar
  54. 54.
    F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” Journal of the Acoustical Society of America 73(4), 1366–1373 (1983).CrossRefPubMedGoogle Scholar
  55. 55.
    F. L. Lizzi, D. L. King, M. C. Rorke, J. Hui, M. Ostromogilsky, M. M. Yaremko, E. J. Feleppa, and P. Wai, “Comparison of theoretical scattering results and ultrasonic data from clinical liver examinations,” Ultrasound in Medicine and Biology 14(5), 377–385 (1988).CrossRefPubMedGoogle Scholar
  56. 56.
    M. L. Oelze, W. D. O’Brien, Jr., J. P. Blue, and J. F. Zachary, “Differentiation and characterization of rat mammary fibroadenomas and 4T1 mouse carcinomas using quantitative ultrasound imaging,” IEEE Transactions on Medical Imaging 23(6), 764–771 (2004).CrossRefPubMedGoogle Scholar
  57. 57.
    F. Ossant, M. Lebertre, L. Pourcelot, and F. Patat, “Ultrasonic characterization of maturation of fetal lung microstructure: an animal study,” Ultrasound in Medicine and Biology 27(2), 157–169 (2001).CrossRefPubMedGoogle Scholar
  58. 58.
    C. M. Sehgal, “Quantitative relationship between tissue composition and scattering of ultrasound,” Journal of the Acoustical Society of America 94(4), 1944–1952 (1993).CrossRefPubMedGoogle Scholar
  59. 59.
    F. Padilla, F. Peyrin, and P. Laugier, “Prediction of backscatter coefficient in trabecular bones using a numerical model of three-dimensional microstructure,” Journal of the Acoustical Society of America 113(2), 1122–1129 (2003).CrossRefPubMedGoogle Scholar
  60. 60.
    R. Strelitzki, P. H. Nicholson, and V. Paech, “A model for ultrasonic scattering in cancellous bone based on velocity fluctuations in a binary mixture,” Physiological Measurement 19(2), 189–196 (1998).CrossRefPubMedGoogle Scholar
  61. 61.
    P. M. Morse and K. U. Ingard, Theoretical acoustics (Princeton University Press, Princeton, NJ, 1968).Google Scholar
  62. 62.
    K. Sobczyk, Stochastic wave propagation (Elsevier, New York, 1985).Google Scholar
  63. 63.
    L. Serpe and J. Y. Rho, “The nonlinear transition period of broadband ultrasonic attenuation as bone density varies,” Journal of Biomechanics 29, 963–966 (1996).CrossRefPubMedGoogle Scholar
  64. 64.
    D. E. Grenoble, J. L. Katz, K. L. Dunn, K. L. Murty, and R. S. Gilmore, “The elastic properties of hard tissues and apatites,” Journal of Biomedical Materials Research 6(3), 221–233 (1972).CrossRefPubMedGoogle Scholar
  65. 65.
    E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography,” Physics in Medicine and Biology 50(23), 5545–5556 (2005).CrossRefPubMedGoogle Scholar
  66. 66.
    K. A. Wear, F. Padilla, and P. Laugier, “Comparison of the Faran cylinder model and the weak scattering model for predicting the frequency dependence of backscatter from human cancellous femur in vitro,” Journal of the Acoustical Society of America 124(3), 1408–1410 (2008).CrossRefPubMedGoogle Scholar
  67. 67.
    K. A. Wear, T. A. Stiles, G. R. Frank, E. L. Madsen, F. Cheng, E. J. Feleppa, C. S. Hall, B. S. Kim, P. Lee, W. D. O’Brien, Jr., M. L. Oelze, B. I. Raju, K. K. Shung, T. A. Wilson, and J. R. Yuan, “Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz,” Journal of Ultrasound in Medicine 24(9), 1235–1250 (2005).PubMedGoogle Scholar
  68. 68.
    P. Laugier, P. Droin, A. M. Laval-Jeantet, and G. Berger, “In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and QCT,” Bone 20, 157–165 (1997).CrossRefPubMedGoogle Scholar
  69. 69.
    D. Hans, P. Dargent-Molina, A. M. Schott, J. L. Sebert, C. Cormier, P. O. Kotzki, P. D. Delmas, J. M. Pouilles, G. Breart, and P. J. Meunier, “Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study,” Lancet 348(9026), 511–514 (1996).CrossRefPubMedGoogle Scholar
  70. 70.
    P. Droin, G. Berger, and P. Laugier, “Velocity dispersion of acoustic waves in cancellous bone,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 45, 581–592 (1998).CrossRefGoogle Scholar
  71. 71.
    J. J. Kaufman, W. Xu, A. E. Chiabrera, and R. S. Siffert, “Diffraction effects in insertion mode estimation of ultrasonic group-velocity,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 42(2), 232–242 (1995).CrossRefGoogle Scholar
  72. 72.
    K. A. Wear, “Ultrasonic scattering from cancellous bone: a review,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 44, 1432–1441 (2008).CrossRefGoogle Scholar
  73. 73.
    P. H. F. Nicholson, R. Müller, X. G. Cheng, P. Rüegsegger, G. Van der Perre, J. Dequeker, and S. Boonen, “Quantitative ultrasound and trabecular architecture in the human calcaneus,” Journal of Bone and Mineral Research 16(10), 1886–1892 (2001).CrossRefPubMedGoogle Scholar
  74. 74.
    B. K. Hoffmeister, J. A. Auwarter, and J. Y. Rho, “Effect of marrow on the high frequency ultrasonic properties of cancellous bone,” Physics in Medicine and Biology 47(18), 3419–3427 (2002).CrossRefPubMedGoogle Scholar
  75. 75.
    P. H. F. Nicholson and M. L. Bouxsein, “Bone marrow influences quantitative ultrasound measurements in human cancellous bone” (2002).Google Scholar
  76. 76.
    K. A. Wear, A. Laib, A. P. Stuber, and J. C. Reynolds, “Comparison of measurements of phase velocity in human calcaneus to Biot theory,” Journal of the Acoustical Society of America 117(5), 3319–3324 (2005).CrossRefPubMedGoogle Scholar
  77. 77.
    M. F. Insana, “Modeling acoustic backscatter from kidney microstructure using an anisotropic correlation function,” Journal of the Acoustical Society of America 97(1), 649–655 (1995).CrossRefPubMedGoogle Scholar
  78. 78.
    M. F. Insana, T. J. Hall, and J. L. Fishback, “Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties,” Ultrasound in Medicine and Biology 17(6), 613–626 (1991).CrossRefPubMedGoogle Scholar
  79. 79.
    K. A. Wear, “The effect of trabecular material properties on the frequency dependence of backscatter from cancellous bone,” Journal of the Acoustical Society of America 114(1), 62–65 (2003).CrossRefPubMedGoogle Scholar
  80. 80.
    G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, “Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation,” Journal of Bone and Mineral Research 22(5), 665–674 (2007).CrossRefPubMedGoogle Scholar
  81. 81.
    F. Padilla, Q. Grimal, and P. Laugier, “Ultrasonic propagation through trabecular bone modeled as a random medium,” Japanese Journal of Applied Physics 47(5), 4220–4222 (2008).CrossRefGoogle Scholar
  82. 82.
    F. L. Lizzi, E. J. Feleppa, M. Astor, and A. Kalisz, “Statistics of ultrasonic spectral parameters for prostate and liver examinations,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 44(4), 935–942 (1997).CrossRefGoogle Scholar
  83. 83.
    F. Luppe, J. M. Conoir, and H. Franklin, “Scattering by a fluid cylinder in a porous medium: application to trabecular bone,” Journal of the Acoustical Society of America 111(6), 2573–2582 (2002).CrossRefPubMedGoogle Scholar
  84. 84.
    F. Luppe, J. M. Conoir, and H. Franklin, “Multiple scattering in a trabecular bone: influence of the marrow viscosity on the effective properties,” Journal of the Acoustical Society of America 113(5), 2889–2892 (2003).CrossRefPubMedGoogle Scholar
  85. 85.
    F. Padilla and P. Laugier, “Prediction of ultrasound attenuation in cancellous bones using poroelasticity and scattering theories,” presented at the 2001 IEEE Ultrasonics Symposium Proceedings, Vols. 1 and 2, New York, 2001.Google Scholar
  86. 86.
    E. Bossy, P. Laugier, F. Peyrin, and F. Padilla, “Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur,” Journal of the Acoustical Society of America 122(4), 2469–2475 (2007).CrossRefPubMedGoogle Scholar
  87. 87.
    G. Haiat, F. Padilla, R. Barkmann, C. C. Gluer, and P. Laugier, “Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants,” Ultrasonics 44 (Suppl 1), e289–294 (2006).CrossRefPubMedGoogle Scholar
  88. 88.
    F. Padilla, E. Bossy, G. Haiat, F. Jenson, and P. Laugier, “Numerical simulation of wave propagation in cancellous bone,” Ultrasonics 44 (Suppl 1), e239–243 (2006).CrossRefPubMedGoogle Scholar
  89. 89.
    J. G. Mottley and J. G. Miller, “Anisotropy of the ultrasonic attenuation in soft tissues: measurements in vitro,” Journal of the Acoustical Society of America 88, 1203–1210 (1990).CrossRefPubMedGoogle Scholar
  90. 90.
    M. Pakula, F. Padilla, and P. Laugier, “Influence of the filling fluid on frequency-dependent velocity and attenuation in cancellous bones between 0.35 and 2.5 MHz,” Journal of the Acoustical Society of America 126(6), 3301–3310 (2009).CrossRefPubMedGoogle Scholar
  91. 91.
    W. C. Pereira, L. S. Bridal, A. Coron, and P. Laugier, “Singular spectrum analysis applied to backscattered ultrasound signals from in vitro human cancellous bone specimens,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 51(3), 302–312 (2004).CrossRefGoogle Scholar
  92. 92.
    A. Ishimaru, Wave propagation and scattering in random media (Academic Press, New York, 1978).Google Scholar
  93. 93.
    S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principle of statistical radiophysics IV: wave propagation through random media (Springer, Berlin, Germany, 1989).Google Scholar
  94. 94.
    G. Haiat, F. Padilla, M. Svrcekova, Y. Chevalier, D. Pahr, F. Peyrin, P. Laugier, and P. Zysset, “Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach,” Journal of Biomechanics 42(13), 2033–2039 (2009).CrossRefPubMedGoogle Scholar
  95. 95.
    A. Hosokawa, “Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot’s finite-difference time-domain methods,” Journal of the Acoustical Society of America 118(3), 1782–1789 (2005).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Laboratoire d’Imagerie Parametrique, UMR 7623Université Pierre et Marie Curie, CNRSParisFrance
  2. 2.Department of RadiologyUniversity of Michigan Medical CenterAnn ArborUSA
  3. 3.Center for Devices and Radiological HealthU.S. Food and Drug AdministrationSilver SpringUSA

Personalised recommendations