Quantitative Ultrasound Instrumentation for Bone In Vivo Characterization

  • Pascal LaugierEmail author


Although it has been over 20 years since the first recorded use of quantitative ultrasound (QUS) technology to predict bone strength, the field has not yet reached its maturity. Among several QUS technologies available to measure cortical or cancellous bone sites, at least some of them have demonstrated potential to predict fracture risk in a number of clinical circumstances, with an equivalent efficiency compared to X-ray densitometry techniques, with the advantages of being non-ionizing, inexpensive, portable, highly acceptable to patients and repeatable. In this chapter, we review instrumental developments that have led to in vivo applications of bone QUS. While several proposals have been made for practical clinical use, there are a number of critical issues that still need to be addressed, such as quality control and standardization. On the other side, although still at an early stage of development, recent QUS approaches to assess bone quality factors seem very promising. These include guided waves to assess mechanical and structural properties of long cortical bones or new QUS technologies adapted to measure the central skeleton (hip). New data acquisition and signal processing procedures are prone to reveal bone properties beyond bone mineral quantity and to provide a more accurate assessment of bone strength.


Attenuation Axial transmission Bidirectional axial transmission Bone quality Bone strength BUA Calcaneus Circumferential waves Densitometry Diffraction Femur Forearm Fracture risk Heel Hip Phalanges Phase cancellation QUS imaging Radius SOS Tibia Transverse transmission Velocity dispersion 


  1. 1.
    C. Simonelli, R. A. Adler, G. M. Blake, J. P. Caudill, A. Khan, E. Leib, M. Maricic, J. C. Prior, S. R. Eis, C. Rosen, and D. L. Kendler, “Dual-Energy X-Ray Absorptiometry Technical issues: the 2007 ISCD Official Positions,” J Clin Densitom 11(1), 109–122 (2008).CrossRefPubMedGoogle Scholar
  2. 2.
    I. Siegel, G. T. Anast, and T. Melds, “The determination of fracture healing by measurement of sound velocity across the fracture site,” Surg Gynecol Obste, 107(3), 327–332 (1958).Google Scholar
  3. 3.
    C. M. Langton, S. B. Palmer, and S. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone,” Eng Med 13(2), 89–91 (1984).CrossRefPubMedGoogle Scholar
  4. 4.
    K. E. Fredfeldt, “Sound velocity in the middle phalanges of the human hand,” Acta Radiol Diagn 27, 95–96 (1986).Google Scholar
  5. 5.
    D. Hans, S. Srivastav, C. Singal, R. Barkmann, C. Njeh, E. Kantorovich, et al., “Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture?,” J Bone Miner Res 14, 644–651 (1999).CrossRefPubMedGoogle Scholar
  6. 6.
    T. Otani, I. Mano, T. Tsujimoto, T. Yamamoto, R. Teshima, and H. Naka, “Estimation of in vivo cancellous bone elasticity,” Jap J Appl Phys 48, 07GK05-01-07GK05-05 (2009).Google Scholar
  7. 7.
    A. J. Foldes, A. Rimon, D. D. Keinan, and M. M. Popovtzer, “Quantitative ultrasound of the tibia: a novel approach assessment of bone status,” Bone 17(4), 363–367 (1995).CrossRefPubMedGoogle Scholar
  8. 8.
    R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haiat, M. Heller, and C. C. Glüer, “In vivo measurements of ultrasound transmission through the human proximal femur,” Ultrasound Med Biol 34(7), 1186–1190 (2008).CrossRefPubMedGoogle Scholar
  9. 9.
    C. C. Glüer, R. Eastell, D. M. Reid, D. Felsenberg, C. Roux, R. Barkmann, W. Timm, T. Blenk, G. Armbrecht, A. Stewart, J. Clowes, F. E. Thomasius, and S. Kolta, “Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study,” J Bone Miner Res 19(5), 782–793 (2004).CrossRefPubMedGoogle Scholar
  10. 10.
    M. A. Krieg, R. Barkmann, S. Gonnelli, A. Stewart, D. C. Bauer, L. Del Rio Barquero, J. J. Kaufman, R. Lorenc, P. D. Miller, W. P. Olszynski, C. Poiana, A. M. Schott, E. M. Lewiecki, and D. Hans, “Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions,” J Clin Densitom 11(1), 163–187 (2008).CrossRefPubMedGoogle Scholar
  11. 11.
    F. Marin, J. Gonzalez-Macias, A. Diez-Perez, S. Palma, and M. Delgado-Rodriguez, “Relationship between bone quantitative ultrasound and fractures: a meta-analysis,” J Bone Miner Res 21(7), 1126–1135 (2006).CrossRefPubMedGoogle Scholar
  12. 12.
    P. P. Antich, J. A. Anderson, R. B. Ashman, J. E. Dowdey, J. Gonzales, R. Murry, J. Zerwekh, and C. Y. C. Pak, “Measurement of mechanical properties of bone material in vitro by ultrasound reflection: Methodology and comparison with ultrasound transmission,” J Bone Miner Res 6(4), 417–426 (1991).CrossRefPubMedGoogle Scholar
  13. 13.
    P. P. Antich, C. Y. C. Pak, J. Gonzales, J. A. Anderson, R. B. Ashman, K. Sakhaee, and C. Rubin, “Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate,” J Bone Miner Res 8(3), 301–311 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    J. E. Zerwekh, P. P. Antich, S. Mehta, K. Sakhaee, F. Gottschalk, and C. Y. Pak, “Reflection ultrasound velocities and histomorphometric and connectivity analyses: correlations and effect of slow-release sodium fluoride,” J Bone Miner Res 12(12), 2068–2075 (1997).CrossRefPubMedGoogle Scholar
  15. 15.
    E. Richer, M. A. Lewis, C. V. Odvina, M. A. Vazquez, B. J. Smith, R. D. Peterson, J. R. Poindexter, P. P. Antich, and C. Y. Pak, “Reduction in normalized bone elasticity following long-term bisphosphonate treatment as measured by ultrasound critical angle reflectometry,” Osteoporos Int 16(11), 1384–1392. Epub 2005 Feb 1322 (2005).Google Scholar
  16. 16.
    S. Mehta and P. Antich, “Measurement of shear-wave velocity by ultrasound critical-angle reflectometry,” Ultrasound Med Biol 23(7), 1123–1126 (1997).CrossRefPubMedGoogle Scholar
  17. 17.
    S. Mehta, S, O. K. Oz, and P. P. Antich, “Bone elasticity and ultrasound velocity are affected by subtle changes in the organic matrix.,” J Bone Miner Res 13(1), 114–121 (1998).Google Scholar
  18. 18.
    B. S. Garra, M. Locher, S. Felker, and K. A. Wear, “Measurements of ultrasonic backscattered spectral centroid shift from spine in vivo: methodology and preliminary results,” Ultrasound Med Biol 35(1), 165–168 (2009).CrossRefPubMedGoogle Scholar
  19. 19.
    C. Roux, V. Roberjot, R. Porcher, S. Kolta, M. Dougados, and P. Laugier, “Ultrasonic backscatter and transmission parameters at the os calcis in postmenopausal osteoporosis,” J Bone Miner Res 16(7), 1353–1362 (2001).CrossRefPubMedGoogle Scholar
  20. 20.
    K. A. Wear and B. S. Garra, “Assessment of bone density using ultrasonic backscatter,” Ultrasound Med Biol 24(5), 689–695 (1998).CrossRefPubMedGoogle Scholar
  21. 21.
    I. Mano, K. Horii, S. Takai, T. Suzaki, H. Nagaoka, and T. Otani, “Development of novel ul-trasonic bone densitometry using acoustic parameters of cancellous bone for fast and slow waves,” Jpn J Appl Phys 45, 4700–4702 (2006).CrossRefGoogle Scholar
  22. 22.
    R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller, and C. C. Glüer, “Femur ultrasound (FemUS)-first clinical results on hip fracture discrimination and estimation of femoral BMD,” Osteoporos Int 21(6), 969–976 (2010).CrossRefPubMedGoogle Scholar
  23. 23.
    R. Barkmann, P. Laugier, U. Moser, S. Dencks, M. Klausner, F. Padilla, G. Haïat, and C. C. Glüer, “A device for in vivo measurements of quantitative ultrasound variables at the human proximal femur,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1197–1204 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    P. Droin, G. Berger, and P. Laugier, “Dispersion of acoustic waves in cancellous bone,” IEEE Trans Ultrasonics Ferroelectr Freq Control 45, 581–592 (1998).CrossRefGoogle Scholar
  25. 25.
    P. Laugier, “Instrumentation for in vivo assessment of bone strength,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1179–1196 (2008).CrossRefPubMedGoogle Scholar
  26. 26.
    P. Laugier, P. Droin, A. M. Laval-Jeantet, and G. Berger, “In vitro assessment of the relationship between acoustic properties and bone mass density of the calcaneus by comparison of ultrasound parametric imaging and QCT,” Bone 20, 157–165 (1997).CrossRefPubMedGoogle Scholar
  27. 27.
    J. J. Kaufman, W. Xu, A. E. Chiabrera, and R. S. Siffert, “Diffraction effects in insertion mode estimation of ultrasound group velocity,” IEEE Trans Ultrason Ferroelectr Freq Control 42, 232–242 (1995).CrossRefGoogle Scholar
  28. 28.
    S. Chaffaï, F. Padilla, G. Berger, and P. Laugier, “In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2-2.0 MHz,” J Acoust Soc Am 108, 1281–1289 (2000).Google Scholar
  29. 29.
    K. A. Wear, “Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz,” IEEE Trans Ultrason Ferroelectr Freq Control 48(2), 602–608 (2001).Google Scholar
  30. 30.
    W. Xu and J. J. Kaufman, “Diffraction correction methods for insertion ultrasound attenuation estimation,” IEEE Trans Biomed Eng 40(6), 563–570 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    R. Strelitzki and J. A. Evans, “Diffraction and interface losses in broadband ultrasound attenuation measurements of the calcaneus,” Physiol Meas 19, 197–204 (1998).CrossRefPubMedGoogle Scholar
  32. 32.
    C. C. Anderson, K. R. Marutyan, M. R. Holland, K. A. Wear, and J. G. Miller, “Interference between wave modes may contribute to the apparent negative dispersion observed in cancellous bone,” J Acoust Soc Am 124(3), 1781–1789 (2008).CrossRefPubMedGoogle Scholar
  33. 33.
    A. Q. Bauer, K. R. Marutyan, M. R. Holland, and J. G. Miller, “Negative dispersion in bone: the role of interference in measurements of the apparent phase velocity of two temporally overlapping signals,” J Acoust Soc Am 123(4), 2407–2414 (2008).CrossRefPubMedGoogle Scholar
  34. 34.
    K. R. Marutyan, M. R. Holland, and J. G. Miller, “Anomalous negative dispersion in bone can result from the interference of fast and slow waves,” J Acoust Soc Am 120(5 Pt 1), EL55–61 (2006).Google Scholar
  35. 35.
    V. M. Merkulova, “Accuracy of the pulse method for measuring the attenuation and velocity of ultrasound,” Sov Phys Acoust 12, 411–467 (1967).Google Scholar
  36. 36.
    P. H. F. Nicholson, G. Lowet, C. M. Langton, J. Dequeker, and G. Van der Perre, “A comparison of time-domain and frequency domain approaches to ultrasonic velocity measurement in trabecular bone,” Phys Med Biol 41, 2421–2435 (1996).CrossRefPubMedGoogle Scholar
  37. 37.
    R. Strelitzki and J. A. Evans, “On the measurement of the velocity of ultrasound in the os calcis using short pulses,” Eur J Ultrasound 4, 205–213 (1996).CrossRefGoogle Scholar
  38. 38.
    K. Wear, “The effects of frequency-dependent attenuation and dispersion on sound speed measurements: applications in human trabecular bone,” IEEE Trans Ultrason Ferroelectr Freq Control 47(1), 265–273 (2000).CrossRefPubMedGoogle Scholar
  39. 39.
    G. Haiat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C. C. Gluer, and P. Laugier, “Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur,” Calcif Tissue Int 77(3), 186–192 (2005).CrossRefPubMedGoogle Scholar
  40. 40.
    K. A. Wear, “A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone,” J Acoust Soc Am 109(3), 1213–1218 (2001).CrossRefPubMedGoogle Scholar
  41. 41.
    D. Hans, P. Dargent-Moline, A. M. Schott, J. L. Sebert, C. Cormier, P. O. Kotski, P. D. Delmas, J. M. Pouilles, G. Breart, and P. J. Meunier, “Ultrasonographic heel measurements to predict hip fracture in elderly women: the Epidos prospective study,” Lancet 348(9026), 511–514 (1996).CrossRefPubMedGoogle Scholar
  42. 42.
    G. Haiat, F. Padilla, R. O. Cleveland, and P. Laugier, “Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens,” IEEE Trans Ultrason Ferroelectr Freq Control 53(1), 39–51 (2006).CrossRefPubMedGoogle Scholar
  43. 43.
    K. A. Wear, “method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1473–1479 (2008).CrossRefPubMedGoogle Scholar
  44. 44.
    J. J. Kaufman, G. Luoc, D. Conroyd, W. A. Johnsone, R. L. Altmane, and R. S. Siffert, “New ultrasound system for bone assessment,” presented at the Medical Imaging, San Diego, 2004.Google Scholar
  45. 45.
    R. Morris, R. Mazess, J. Trempe, and J. Hanson, “Stiffness compensates for temperature variation in ultra-sound densitometry,” J Bone Miner Res 12(S1), S388 (1997).Google Scholar
  46. 46.
    B. Fournier, C. Chappard, C. Roux, G. Berger, and P. Laugier, “Quantitative ultrasound imaging at the calcaneus using an automatic region of interest,” Osteoporos Int 7, 363–369 (1997).CrossRefPubMedGoogle Scholar
  47. 47.
    C. Cepollaro, S. Gonnelli, A. Montagnani, C. Caffarelli, A. Cadirni, S. Martini, and R. Nuti, “In Vivo Performance Evaluation of the Achilles Insight QUS Device,” J Clin Densitom 8(3), 341–346 (2005).CrossRefPubMedGoogle Scholar
  48. 48.
    M. A. Gomez, M. Defontaine, B. Giraudeau, E. Camus, L. Colin, P. Laugier, and F. Patat, “In vivo performance of a matrix-based quantitative ultrasound imaging device dedicated to calcaneus investigation,” Ultrasound Med Biol 28(10), 1285–1293 (2002).CrossRefPubMedGoogle Scholar
  49. 49.
    C. F. Njeh, D. Hans, T. Fuerst, C. C. Glüer, and H. K. Genant, Quantitative Ultrasound: assesment of osteoporosis and bone status (Martin Dunitz, London, 1999).Google Scholar
  50. 50.
    R. Barkmann, S. Lüsse, B. Stampa, S. Sakata, M. Heller, and C.-C. Glüer, “Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo,” Osteoporosis International 11, 745–755 (2000).CrossRefPubMedGoogle Scholar
  51. 51.
    C. M. Langton, C. M. Riggs, and G. P. Evans, “Pathway of ultrasound waves in the equine third metacarpal bone,” J Biomed Eng 13(113–118) (1991).CrossRefPubMedGoogle Scholar
  52. 52.
    R. McCartney and L. Jeffcott, “Combined 2.25 MHz ultrasound velocity and bone mineral density measurements in the equine metacarpus and their in vivo applications.,” Med Biol Eng Comput 25, 620–626 (1897).Google Scholar
  53. 53.
    S. Sakata, R. Barkmann, E. M. Lochmuller, M. Heller, and C. C. Gluer, “Assessing bone status beyond BMD: evaluation of bone geometry and porosity by quantitative ultrasound of human finger phalanges,” J Bone Miner Res 19(6), 924–930. Epub 2004 Jan 2027 (2004).Google Scholar
  54. 54.
    R. Cadossi, F. de Terlizzi, V. Cane, M. Fini, and C. Wuster, “Assessment of bone architecture with ultrasonometry: experimental and clinical experience,” Horm Res 54(Suppl 1), 9–18 (2000).PubMedGoogle Scholar
  55. 55.
    C. Wüster, C. Albanese, D. De Aloysio, F. Duboeuf, M. Gambacciani, S. Gonnelli, C. Glüer, D. Hans, J. Joly, J. Reginster, F. De Terlizzi, and R. Cadossi, “Phalangeal osteosonogrammetry study: age-related changes, diagnostic sensitivity, and discrimination power. The Phalangeal Osteosonogrammetry Study Group,” J Bone Miner Res 15(8), 1603–1614 (2000).CrossRefGoogle Scholar
  56. 56.
    Z. E. Fellah, J. Y. Chapelon, S. Berger, W. Lauriks, and C. Depollier, “Ultrasonic wave propagation in human cancellous bone: application of Biot theory,” J Acoust Soc Am 116(1), 61–73 (2004).CrossRefPubMedGoogle Scholar
  57. 57.
    A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” J Acoust Soc Am 101(1), 1–5 (1997).CrossRefGoogle Scholar
  58. 58.
    T. Otani, “Quantitative estimation of bone density and bone quality using acoustic parameters of cancellous bone for fast and slow waves,” Jpn J Appl Phys 44, 4578–4582 (2005).CrossRefGoogle Scholar
  59. 59.
    J. Grondin, Q. Grimal, K. Engelke, and P. Laugier, “Potential of QUS to assess cortical bone geometry at the hip: a model based study,” Ultrasound Med Biol 36(4), 656–666 (2010).CrossRefPubMedGoogle Scholar
  60. 60.
    S. Dencks, R. Barkmann, F. Padilla, G. Haïat, P. Laugier, and C. C. Glüer, “Wavelet-based signal processing of in vitro ultrasonic measurements at the proximal femur,” Ultrasound Med Biol 33(6), 970–980 (2007).CrossRefPubMedGoogle Scholar
  61. 61.
    S. Dencks, R. Barkmann, F. Padilla, P. Laugier, G. Schmitz, and C. C. Glüer, “Model-based estimation of quantitative ultrasound variables at the proximal femur,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1304–1315 (2008).CrossRefPubMedGoogle Scholar
  62. 62.
    G. Lowet and G. Van der Perre, “Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation,” J Biomech 29(10), 1255–1262 (1996).CrossRefPubMedGoogle Scholar
  63. 63.
    P. Moilanen, P. H. Nicholson, T. Karkkainen, Q. Wang, J. Timonen, and S. Cheng, “Assessment of the tibia using ultrasonic guided waves in pubertal girls,” Osteoporos Int 14(12), 1020–1027. Epub 2003 Oct 1015 (2003).Google Scholar
  64. 64.
    M. Muller, P. Moilanen, E. Bossy, P. Nicholson, V. Kilappa, J. Timonen, M. Talmant, S. Cheng, and P. Laugier, “Comparison of three ultrasonic axial transmission methods for bone assessment,” Ultrasound Med Biol 31(5), 633–642 (2005).CrossRefPubMedGoogle Scholar
  65. 65.
    R. Barkmann, E. Kantorovich, C. Singal, D. Hans, H. Genant, M. Heller, and C. Glüer, “A new method for quantitative ultrasound measurements at multiple skeletal sites,” J Clin Densitom 3, 1–7 (2000).CrossRefPubMedGoogle Scholar
  66. 66.
    C. Njeh, I. Saeed, M. Grigorian, D. L. Kendler, B. Fan, J. Shepherd, M. McClung, W. M. Drake, and H. K. Genant, “Assessment of bone status using speed of sound at multiple anatomical sites,” Ultrasound Med Biol 10, 1337–1345 (2001).CrossRefGoogle Scholar
  67. 67.
    M. Talmant, S. Kolta, C. Roux, D. Haguenauer, I. Vedel, B. Cassou, E. Bossy, and P. Laugier, “In vivo performance evaluation of bi-directional ultrasonic axial transmission for cortical bone assessment,” Ultrasound Med Biol 35(6), 912–919 (2009).CrossRefPubMedGoogle Scholar
  68. 68.
    M. Weiss, A. Ben-Shlomo, H. P., and S. Ish-Shalom, “Discrimination of proximal hip fracture by quantitative ultrasound measurement at the radius,” Osteoporos Int 11, 411–416 (2000).Google Scholar
  69. 69.
    E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study,” J Acoust Soc Am 112(1), 297–307 (2002).CrossRefPubMedGoogle Scholar
  70. 70.
    A. Sarvazyan, A. Tatarinov, V. Egorov, S. Airapetian, V. Kurtenok, and C. J. J. Gatt, “Application of the dual-frequency ultrasonometer for osteoporosis detection,” Ultrasonics 49(3), 331–337 (2009).CrossRefPubMedGoogle Scholar
  71. 71.
    P. Moilanen, P. H. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Measuring guided waves in long bones: modeling and experiments in free and immersed plates,” Ultrasound Med Biol 32(5), 709–719 (2006).CrossRefPubMedGoogle Scholar
  72. 72.
    V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, “Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones,” J Acoust Soc Am 121(6), 3907–3921 (2007).CrossRefPubMedGoogle Scholar
  73. 73.
    M. Sasso, G. Haiat, M. Talmant, P. Laugier, and S. Naili, “SVD-based algorithm for axial transmission ultrasound technique application to cortical bone characterization,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1328–1332 (2008).CrossRefPubMedGoogle Scholar
  74. 74.
    D. Ta, W. Wang, Y. Wang, L. H. Le, and Y. Zhou, “Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone,” Ultrasound Med Biol 35(4), 641–652 (2009).CrossRefPubMedGoogle Scholar
  75. 75.
    P. Moilanen, V. Kilappa, P. H. Nicholson, J. Timonen, and S. Cheng, “Thickness sensitivity of ultrasound velocity in long bone phantoms,” Ultrasound Med Biol 30(11), 1517–1521. (2004).Google Scholar
  76. 76.
    P. Nicholson, P. Moilanen, T. Kärkkäinen, J. Timonen, and S. Cheng, “Guided ultrasonic waves in long bones: modelling, experiment and in vivo application,” Physiol Meas 23, 755–768 (2002).CrossRefPubMedGoogle Scholar
  77. 77.
    P. Moilanen, P. H. Nicholson, V. Kilappa, S. Cheng, and Timonen, J., “Assessment of the cortical bone thickness using ultrasonic guided waves: modelling and in vitro study,” Ultrasound Med Biol 33(2), 254–262 (2007).Google Scholar
  78. 78.
    P. Moilanen, “Ultrasonic guided waves in bone,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1277–1286 (2008).CrossRefPubMedGoogle Scholar
  79. 79.
    M. Sasso, M. Talmant, G. Haiat, S. Naili, and P. Laugier, “Analysis of the most energetic low frequency arrival in axially transmitted signals in cortical bone,” IEEE Trans Ultrason Ferroelectr Freq Control 56(11), 2463–2470 (2009).CrossRefPubMedGoogle Scholar
  80. 80.
    J. G. Minonzio, M. Talmant, and P. Laugier, “Guided waves analysis using multi-emitters and multi-receivers arrays: decomposition of the transmission matrix,” J Acoust Soc Am 127(5), 2913–2919 (2010).CrossRefGoogle Scholar
  81. 81.
    E. Bossy, M. Talmant, M. Defontaine, F. Patat, and P. Laugier, “Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials,” IEEE Trans Ultrason Ferroelectr Freq Control 51(1), 71–79 (2004).CrossRefPubMedGoogle Scholar
  82. 82.
    F. Lefebvre, Y. Deblock, P. Campistron, D. Ahite, and J. J. Fabre, “Development of a new ultrasonic technique for bone and biomaterials in vitro characterization,” J Biomed Mater Res 63(4), 441–446 (2002).CrossRefPubMedGoogle Scholar
  83. 83.
    H. Jansons, A. Tatarinov, V. Dzenis, and A. Kregers, “Constructional peculiarities of the human tibia defined by reference to ultrasound measurement data,” Biomaterials 5, 221–226 (1984).CrossRefPubMedGoogle Scholar
  84. 84.
    J. Huopio, H. Kroger, R. Honkanen, J. Jurvelin, S. Saarikoski, and E. Alhava, “Calcaneal ultrasound predicts early postmenopausal fractures as well as axial BMD. A prospective study of 422 women,” Osteoporos Int 15(3), 190–195 (2004).Google Scholar
  85. 85.
    K. T. Khaw, J. Reeve, R. Luben, S. Bingham, A. Welch, N. Wareham, S. Oakes, and N. Day, “Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study,” Lancet 363(9404), 197–202 (2004).CrossRefPubMedGoogle Scholar
  86. 86.
    X. P. Liao, W. L. Zhang, J. He, J. H. Sun, and P. Huang, “Bone measurements of infants in the first 3 months of life by quantitative ultrasound: the influence of gestational age, season, and postnatal age,” Pediatr Radiol 35(9), 847–853 (2005).CrossRefPubMedGoogle Scholar
  87. 87.
    A. Stewart, V. Kumar, and D. M. Reid, “Long-term fracture prediction by DXA and QUS: a 10-year prospective study,” J Bone Miner Res 21(3), 413–418. Epub 2005 Dec 2019 (2006).Google Scholar
  88. 88.
    H. McDevitt and S. F. Ahmed, “Quantitative ultrasound assessment of bone health in the neonate,” Neonatology 91(1), 2–11 (2007).CrossRefPubMedGoogle Scholar
  89. 89.
    G. Haiat, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Gluer, and P. Laugier, “In vitro speed of sound measurement at intact human femur specimens,” Ultrasound Med Biol 31(7), 987–996 (2005).CrossRefPubMedGoogle Scholar
  90. 90.
    F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. D. Laredo, and L. P., “In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density,” J Acoust Soc Am 119(1), 654–663 (2006).Google Scholar
  91. 91.
    C. M. Langton, C. F. Njeh, R. Hodgskinson, and J. D. Currey, “Prediction of mechanical properties of the human calcaneus by broadband ultrasonic attenuation,” Bone 18(6), 495–503 (1996).CrossRefPubMedGoogle Scholar
  92. 92.
    P. H. Nicholson, R. Müller, G. Lowet, X. G. Cheng, T. Hildebrand, P. Rüegseger, G. van der Perre, J. Dequeker, and S. Boonen, “Do quantitative ultrasound measurement reflect structure independently of density in human vertebral cancellous bone,” Bone 23(5), 425–431 (1998).CrossRefPubMedGoogle Scholar
  93. 93.
    C. F. Njeh, R. Hodgskinson, J. D. Currey, and C. M. Langton, “Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone,” Med Eng Phys 18(5), 373–381 (1996).CrossRefPubMedGoogle Scholar
  94. 94.
    K. Wear, A. Stuber, and J. C. Reynolds, “Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus,” Ultrasound Med Biol 26(8), 1311–1316 (2000).CrossRefPubMedGoogle Scholar
  95. 95.
    C. Chappard, P. Laugier, B. Fournier, C. Roux, and G. Berger, “Assessment of the relationship between broadband ultrasound attenuation and bone mineral density at the calcaneus using BUA imaging and DXA,” Osteoporos Int 7, 316–322 (1997).CrossRefPubMedGoogle Scholar
  96. 96.
    J. Toyras, M. T. Nieminen, H. Kroger, and J. S. Jurvelin, “Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently,” Bone 31(4), 503–507 (2002).CrossRefPubMedGoogle Scholar
  97. 97.
  98. 98.
    F. Padilla, F. Jenson, and P. Laugier, “Estimation of trabecular thickness using ultrasound ultrasonic baclkscatter,” Ultrasonic Imaging 28, 3–22 (2006).PubMedGoogle Scholar
  99. 99.
    K. A. Wear, “Ultrasonic scattering from cancellous bone: a review,” IEEE Trans Ultrason Ferroelectr Freq Control 55(7), 1432–1441 (2008).CrossRefPubMedGoogle Scholar
  100. 100.
    J. P. Karjalainen, J. Töyräs, O. Riekkinen, M. Hakulinen, and J. S. Jurvelin, “Ultrasound backscatter imaging provides frequency-dependent information on structure, composition and mechanical properties of human trabecular bone,” Ultrasound Med Biol 35(8), 1376–1384 (2009).CrossRefPubMedGoogle Scholar
  101. 101.
    O. Riekkinen, M. A. Hakulinen, M. J. Lammi, J. S. Jurvelin, A. Kallioniemi, and J. Töyräs, “Acoustic properties of trabecular bone–relationships to tissue composition,” Ultrasound Med Biol 33(9), 1438–1444 (2007).CrossRefPubMedGoogle Scholar
  102. 102.
    O. Riekkinen, M. A. Hakulinen, J. Töyräs, and J. S. Jurvelin, “Spatial variation of acoustic properties is related with mechanical properties of trabecular bone,” Phys Med Biol 52(23), 6961–6968 (2007).CrossRefPubMedGoogle Scholar
  103. 103.
    E. Bossy, M. Talmant, F. Peyrin, L. Akrout, P. Cloetens, and P. Laugier, “An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity,” J Bone Miner Res 19(9), 1548–1556. Epub 2004 Jun 1542 (2004).Google Scholar
  104. 104.
    K. Raum, I. Leguerney, F. Chandelier, E. Bossy, M. Talmant, A. Saied, F. Peyrin, and P. Laugier, “Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements,” Ultrasound Med Biol 31(9), 1225–1235 (2005).CrossRefPubMedGoogle Scholar
  105. 105.
    M. Muller, D. Mitton, P. Moilanen, V. Bousson, M. Talmant, and P. Laugier, “Prediction of bone mechanical properties using QUS and pQCT: study of the human distal radius,” Med Eng Phys 30(6), 761–767 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Laboratoire d’Imagerie ParametriqueUniversité Pierre et Marie Curie, CNRSParisFrance

Personalised recommendations