Advertisement

Introduction to the Physics of Ultrasound

  • Pascal LaugierEmail author
  • Guillaume Haïat
Chapter

Abstract

From an acoustical point of view, bone is a complex medium as it is heterogeneous, anisotropic and viscoelastic. This chapter reviews the basic notions of physical acoustics which are necessary to tackle the problem of the ultrasonic propagation in bone, in the perspective of the application of quantitative ultrasound (QUS) techniques to bone characterization. The first section introduces the basic phenomena related to the field of medical ultrasound. Basic description of wave propagation is introduced. Mechanical bases are necessary to understand the elastodynamic nature of the interaction between bone and ultrasound. The physical determinants of the speed of sound of the different types of waves corresponding to the propagation in a liquid and in a solid are considered. The effects of boundary conditions (guided waves) are also detailed. The second section describes the physical interaction between an ultrasonic wave and bone tissue, by introducing reflection/refraction, attenuation and scattering phenomena.

Keywords

Absorption Anisotropy Attenuation Compression wave Diffraction Elastic modulus Elastic solid Group velocity Guided wave Impedance Kramers Krönig Lamb waves Phase velocity Poisson’s ratio Reflection Refraction Scattering Shear wave Snell’s law Speckle Speed of sound Stiffness Strain Stress Young’s modulus 

References

  1. 1.
    D. Royer and E. Dieulesaint,Elastic Waves in Solids I(Springer, New York, 2000).Google Scholar
  2. 2.
    B. A. Auld,Acoustic Fields and Waves in Solids(Krieger Pub Co, New York, 1990).Google Scholar
  3. 3.
    J. D. Achenbach,Wave Propagation in Elastic Solids(Elsevier, Amsterdam, 1973).Google Scholar
  4. 4.
    S. Temkin,Elements of Acoustics(John Wiley & Sons Inc, New York, 1981).Google Scholar
  5. 5.
    M. A. Hakulinen, J. S. Day, J. Toyras, H. Weinans, and J. S. Jurvelin, “Ultrasonic characterization of human trabecular bone microstructure,” Phys Med Biol.51(6), 1633–1648 (2006).CrossRefPubMedGoogle Scholar
  6. 6.
    K. Raum, “Microelastic imaging of bone,” IEEE Trans Ultrason Ferroelectr Freq Control55(7), 1417–1431 (2008).CrossRefPubMedGoogle Scholar
  7. 7.
    G. Haïat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C.-C. Glüer, and P. Laugier, “Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur,” Calcif Tissue Int77(3) (2005).Google Scholar
  8. 8.
    G. Haïat, F. Padilla, R. O. Cleveland, and P. Laugier, “Effects of frequency-dependent attenuation and velocity dispersion on in vitro ultrasound velocity measurements in intact human femur specimens,” IEEE Trans Ultrason Ferroelectr Freq Control53(1), 39–51 (2006).CrossRefPubMedGoogle Scholar
  9. 9.
    K. A. Wear, “The effects of frequency-dependant attenuation and dispersion on sound speed measurements: applications in human trabecular bone,” IEEE Trans Ultrason Ferroelectr Freq Control47(1), 265–273 (2000).CrossRefPubMedGoogle Scholar
  10. 10.
    K. A. Wear, “A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone,” J Acoust Soc Am109(3), 1213–1218 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    M. O’Donnell, E. T. Jaynes, and J. G. Miller, “General relationships between ultrasonic attenuation and dispersion,” J Acoust Soc Am63(6) (1978).Google Scholar
  12. 12.
    M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig relationship between ultrasonic attenuation and phase velocity,” J Acoust Soc Am69(3), 696–701 (1981).CrossRefGoogle Scholar
  13. 13.
    V. Shutilov,Fundamental Physics of Ultrasound(Gordon and Breach, New York, 1988).Google Scholar
  14. 14.
    N. Bilaniuk and G. S. K. Wong, “Speed of sound in pure wateras a function of temperature,” J Acoust Soc Am93(3), 1609–1612 (1993).CrossRefGoogle Scholar
  15. 15.
    S. A. Goss, R. L. Johnston, and F. Dunn, “Comprehensive compilation of empirical ultrasonic properties of mammalian tissues,” J Acoust Soc Am64(2), 423–457 (1978).CrossRefPubMedGoogle Scholar
  16. 16.
    P. H. Nicholson and M. L. Bouxsein, “Effect of temperature on ultrasonic properties of the calcaneus in situ,” Osteoporos Int13(11), 888–892 (2002).Google Scholar
  17. 17.
    G. S. Kino,Acoustic Waves: Devised Imaging and Analog Signal(Prentice Hall, Englewood Cliffs, 1987).Google Scholar
  18. 18.
    R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice, “A continuous wave technique for the mesurement of the elastic properties of cortical bone,” J Biomech17, 349–361 (1984).CrossRefPubMedGoogle Scholar
  19. 19.
    J. L. Katz, “Anisotropy of Young’s modulus of bone,” Nature283, 106–107 (1980).CrossRefPubMedGoogle Scholar
  20. 20.
    P. J. Arnoux, J. Bonnoit, P. Chabrand, M. Jean, and M. Pithioux, “Numerical damage models using a structural approach: application in bones and ligaments,” Eur Phys J Appl Phys17, 65–73 (2002).CrossRefGoogle Scholar
  21. 21.
    H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation inhuman cortical bone - II. Measurements of elastic properties and microhardness,” J Biomech9, 459–464 (1976).Google Scholar
  22. 22.
    G. Haiat, S. Naili, Q. Grimal, M. Talmant, C. Desceliers, and C. Soize, “Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission,” J Acoust Soc Am.125(6), 4043–4052 (2009).Google Scholar
  23. 23.
    E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” J Acoust Soc Am115(5 Pt 1), 2314–2324 (2004).CrossRefPubMedGoogle Scholar
  24. 24.
    S. B. Lang, “Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones,” IEEE T Bio-med EngBME-17(2), 101–105 (1970).Google Scholar
  25. 25.
    L. Serpe and J. Y. Rho, “The nonlinear transition period of broadband ultrasonic attenuation as bone density varies,” J Biomech29, 963–966 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    D. Gazis, “Three-dimensional investigation of the propagation of waves in hollow circular cylinders.II. Numerical Results,” J Acoust Soc Am31(5), 573–578 (1959).CrossRefGoogle Scholar
  27. 27.
    I. Viktorov,Rayleigh and Lamb Waves(Plenum, New York, 1967).Google Scholar
  28. 28.
    P. Moilanen, “Ultrasonic guided waves in bone,” IEEE Trans Ultrason Ferroelectr Freq Control55(6), 1277–1286 (2008).CrossRefPubMedGoogle Scholar
  29. 29.
    C. Hellmich and F. J. Ulm, “Micromechanical model for ultrastructural stiffness of mineralized tissues,” J Eng Mech128(8), 898–908 (2002).CrossRefGoogle Scholar
  30. 30.
    J. M. Crolet, B. Aoubiza, and A. Meunier, “Compact bone: numerical simulation of mechanical characteristics,” J Biomech26(6), 677–687 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    B. Aoubiza, J. M. Crolet, and A. Meunier, “On the mechanical characterization of compact bone structure using the homogenization theory,” J Biomech29(12), 1539–1547 (1996).PubMedGoogle Scholar
  32. 32.
    C. Hellmisch and F. J. Ulm, “Micromechanical Model for Ultrastructural Stiffness of Mineralized Tissues,” J Eng Mech128(8), 898–908 (2002).CrossRefGoogle Scholar
  33. 33.
    A. Hosokawa, “Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot’s finite-difference time-domain methods,” J Acoust Soc Am118(3 Pt 1), 1782–1789 (2005).CrossRefPubMedGoogle Scholar
  34. 34.
    A. Hosokawa and T. Otani, “Acoustic anisotropy in bovine cancellous bone,” J Acoust Soc Am103(5), 2718–2722 (1998).CrossRefPubMedGoogle Scholar
  35. 35.
    Z. E. Fellah, J. Y. Chapelon, S. Berger, W. Lauriks, and C. Depollier, “Ultrasonic wave propagation in human cancellous bone: application of Biot theory,” J Acoust Soc Am116(1), 61–73 (2004).CrossRefPubMedGoogle Scholar
  36. 36.
    E. R. Hughes, T. G. Leighton, G. W. Petley, P. R. White, and R. C. Chivers, “Estimation of critical and viscous frequencies for Biot theory in cancellous bone,” Ultrasonics41(5), 365–368 (2003).CrossRefPubMedGoogle Scholar
  37. 37.
    K. I. Lee, H. S. Roh, and S. W. Yoon, “Correlations between acoustic properties and bone density in bovine cancellous bone from 0.5 to 2 MHz,” J Acoust Soc Am113(5), 2933–2938 (2003).CrossRefPubMedGoogle Scholar
  38. 38.
    K. A. Wear, A. Laib, A. P. Stuber, and J. C. Reynolds, “Comparison of measurements of phase velocity in human calcaneus to Biot theory,” J Acoust Soc Am117(5), 3319–3324 (2005).CrossRefPubMedGoogle Scholar
  39. 39.
    J. L. Williams, “Ultrasonic wave propagation in cancellous and cortical bone: Prediction of experimental results by Biot’s theory,” J Acoust Soc Am91(2), 1106–1112 (1992).CrossRefPubMedGoogle Scholar
  40. 40.
    E. R. Hubbuck, T. G. Leighton, P. R. White, and G. W. Petley, “A stratified model for ultrasonic propagation in cancellous bone,” presented at the Joint meeting of the 16th International Congress on Acoustics and the 135th Meeting of the Acoustical Society of America, Seattle, Washington, June 20–26, 1998.Google Scholar
  41. 41.
    E. R. Hughes, T. G. Leighton, G. W. Petley, and P. R. White, “Ultrasonic propagation in cancellous bone: a new stratified model,” Ultrasound Med Biol.25(5), 811–821 (1999).CrossRefPubMedGoogle Scholar
  42. 42.
    W. Lin, Y. X. Qin, and C. Rubin, “Ultrasonic wave propagation in trabecular bone predicted by the stratified model,” Ann Biomed Eng29(9), 781–790 (2001).CrossRefPubMedGoogle Scholar
  43. 43.
    F. Padilla and P. Laugier, “Phase and group velocities of fast and slow compressional waves in trabecular bone,” J Acoust Soc Am108(4), 1949–1952 (2000).CrossRefPubMedGoogle Scholar
  44. 44.
    K. A. Wear, “A stratified model to predict dispersion in trabecular bone,” IEEE Trans Ultrason Ferroelectr Freq Control48(4), 1079–1083 (2001).CrossRefPubMedGoogle Scholar
  45. 45.
    A. Ishimaru,Wave Propagation and Scattering in Random Media(Wiley, NewYork, 1999).Google Scholar
  46. 46.
    P. P. Antich, J. A. Anderson, R. B. Ashman, J. E. Dowdey, J. Gonzales, R. C. Murry, J. E. Zerwekh, and C. Y. Pak, “Measurement of mechanical properties of bone material in vitro by ultrasound reflection: methodology and comparison with ultrasound transmission,” J Bone Miner Res6(4), 417–426 (1991).CrossRefPubMedGoogle Scholar
  47. 47.
    P. P. Antich, C. Y. C. Pak, J. Gonzales, J. A. Anderson, R. B. Ashman, K. Sakhaee, and C. Rubin, “Measurement of intrinsic bone quality in vivo by reflection ultrasound: correction of impaired quality with slow-release sodium fluoride and calcium citrate,” J Bone Miner Res8(3), 301–311 (1993).CrossRefPubMedGoogle Scholar
  48. 48.
    S. S. Mehta, P. P. Antich, M. M. Daphtary, D. G. Bronson, and E. Richer, “Bone material ultrasound velocity is predictive of whole bone strength,” Ultrasound Med Biol27(6), 861–867 (2001).CrossRefPubMedGoogle Scholar
  49. 49.
    J. C. Bamber,Physical Principles of Medical Ultrasonics(John Wiley & Sons, Chichester, UK, 1986).Google Scholar
  50. 50.
    K. S. Peat and R. Kirby, “Acoustic wave motion along a narrow cylindrical duct in the presence of an axial mean flow and temperature gradient,” J Acoust Soc Am107(4), 1859–1867 (2000).CrossRefPubMedGoogle Scholar
  51. 51.
    E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography,” Phys Med Biol50(23), 5545–5556 (2005).CrossRefPubMedGoogle Scholar
  52. 52.
    K. A. Wear, “Mechanisms for attenuation in cancellous-bone-mimicking phantoms.,” IEEE Trans Ultrason Ferroelectr Freq Control55(11), 2418–2425 (2008).CrossRefPubMedGoogle Scholar
  53. 53.
    T. L. Szabo,Diagnostic Ultrasound, Academic press series on biomedical engineering (Elsevier Academic Press, London, UK, 2004).Google Scholar
  54. 54.
    K. T. Dussik and D. J. Fritch, “Determination of sound attenuation and sound velocity in the structure constituting the joints, and of the ultrasonic field distribution with the joints of living tissues and anatomical preparations, both in normal and pathological conditions” (1956).Google Scholar
  55. 55.
    S. Chaffaï, F. Padilla, G. Berger, and P. Laugier, “In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2–2.0 MHz,” J Acoust Soc Am108, 1281–1289 (2000).Google Scholar
  56. 56.
    S. Han, J. Rho, J. Medige, and I. Ziv, “Ultrasound velocity and broadband attenuation over a wide range of bone mineral density,” Osteoporosis Int6, 291–296 (1996).CrossRefGoogle Scholar
  57. 57.
    C. M. Langton, S. B. Palmer, and S. W. Porter, “The measurement of broadband ultrasonic attenuation in cancellous bone,” Eng Med.13(2), 89–91 (1984).CrossRefPubMedGoogle Scholar
  58. 58.
    R. Strelitzki and J. A. Evans, “Diffraction and interface losses in broadband ultrasound attenuation measurements of the calcaneus,” Physiol Meas19, 197–204 (1998).CrossRefPubMedGoogle Scholar
  59. 59.
    K. A. Wear, “Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz,” IEEE Trans Ultrason Ferroelectr Freq Control48(2), 602–608 (2001).CrossRefPubMedGoogle Scholar
  60. 60.
    J. W. S. Rayleigh and R. B. Lindsay,Theory of Sound(Macmillan, London, UK, 1878).Google Scholar
  61. 61.
    P. Morse and K. Ingard,Theoretical Acoustics(Princetown University Press, Princetown, NJ, 1986).Google Scholar
  62. 62.
    J. C. Bamber, “Ultrasonic properties of tissue,” inUltrasound in medicine, F. A. Duck, A. C. Baker, and A. C. Starritt, eds. (Institute of Physics Publishing, Bristol, UK, 1998).Google Scholar
  63. 63.
    G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” J Acoust Soc Am124(6), 4047–4058 (2008).Google Scholar
  64. 64.
    K. A. Wear, “Frequency dependence of ultrasonic backscatter from human trabecular bone: theory and experiment,” J Acoust Soc Am106(6), 3659–3664 (1999).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Laboratoire d’Imagerie ParametriqueUniversité Pierre et Marie Curie, CNRSParisFrance
  2. 2.CNRS, B2OA UMR 7052ParisFrance

Personalised recommendations