Microscopic Elastic Properties

  • Kay RaumEmail author


Several high frequency ultrasound techniques have been developed during the last decade with the intention to assess elastic properties of bone at the tissue level. In this chapter three major principles are described with exemplary measurements in the frequency range from 50MHz to 1.2GHz. The methods are compared and their application potentials and limitations are discussed with respect to the hierarchical structure of cortical bone. While highly focused transducers with frequencies between 50 and 200MHz are suitable for the assessment of microscale elastic properties, frequencies in the gigahertz range are dedicated to the investigation of the anisotropic lamellar bone structure. The relations between tissue mineralization, acoustic properties and anisotropic elastic coefficients at the micro- and nanoscales will be summarized.


Acoustic impedance Acoustic lens Analogue-to-digital (A/D) Anisotropy Aperture Numerical aperture N.A. Attenuation Bandpass Beam axis Beam width Bone matrix Collagen Compressional wave Confocal Cortical bone C-scan Degree of mineralization of bone Depth of focus Elastic coefficient Elasticity Embedding Fast Fourier transformation (FFT) Femur Fibril Filter Focal plane Focal point Group velocity Haversian canal 



This work has been conducted within the European Associated Laboratory “Ultrasound Based Assessment of Bone” (ULAB) and was supported by the Deutsche For-schungsgemeinschaft (grants Ra1380/1 and Ra1380/7).


  1. 1.
    S. Weiner and H. D. Wagner, “The material bone: Structure mechanical function relations,” Annual Review of Materials Science 28, 271–298 (1998).CrossRefGoogle Scholar
  2. 2.
    J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Medical Engineering and Physics 20(2), 92–102 (1998).CrossRefPubMedGoogle Scholar
  3. 3.
    D. Ruffoni, P. Fratzl, P. Roschger, K. Klaushofer, and R. Weinkamer, “The bone mineralization density distribution as a fingerprint of the mineralization process,” Bone 40(5), 1308–1319 (2007).CrossRefPubMedGoogle Scholar
  4. 4.
    R. B. Ashman, S. C. Cowin, J. Y. Rho, W. C. Van Buskirk, and J. C. Rice, “A continous wave technique for the measurement of the elastic properties of cortical bone,” Journal of Biomechanics 17(5), 349 (1984).CrossRefPubMedGoogle Scholar
  5. 5.
    S. Lees, “A model for the distribution of HAP crystallites in bone – an hypothesis,” Calcified Tissue International 27(1), 53 (1979).CrossRefPubMedGoogle Scholar
  6. 6.
    J. Y. Rho, “An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone,” Ultrasonics 34(8), 777 (1996).CrossRefPubMedGoogle Scholar
  7. 7.
    W. C. VanBuskirk, S. C. Cowin, and R. N. Ward, “Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone,” Journal of Biomechanical Engineering 103, 67 (1981).CrossRefGoogle Scholar
  8. 8.
    K. Raum and W. D. O’Brien, “Pulse-echo field distribution measurement technique for high-frequency ultrasound sources,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 44(4), 810 (1997).CrossRefGoogle Scholar
  9. 9.
    G. A. Briggs and G. A. Briggs, Acoustic Microscopy(Clarendon Press, Oxford, 1992).Google Scholar
  10. 10.
    B. A. Auld, Acoustic Fields and Waves in Solids(Krieger Publishing Company, Malabar, 1990).Google Scholar
  11. 11.
    S. Lakshmanan, A. Bodi, and K. Raum, “Assessment of anisotropic tissue elasticity of cortical bone from high-resolution, angular acoustic measurements,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency 54(8), 1560–1570 (2007).CrossRefGoogle Scholar
  12. 12.
    K. Raum, “Microelastic imaging of bone,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55(7), 1417–1431 (2008).CrossRefGoogle Scholar
  13. 13.
    R. M. Jones, Mechanics of Composite Materials(McGraw-Hill, New York, 1984).Google Scholar
  14. 14.
    S. Hirsekorn, S. Pangraz, G. Weides, and W. Arnold, “Measurement of elastic impedance with high spatial resolution using acoustic microscopy” Applied Physics Letters 67(6), 745 (1995).CrossRefGoogle Scholar
  15. 15.
    S. Hirsekorn, S. Pangraz, G. Weides, and W. Arnold, “Erratum: Measurement of elastic impedance with high spatial resolution using acoustic microscopy,” Applied Physics Letters 69(14), 2138 (1996).CrossRefGoogle Scholar
  16. 16.
    S. D. Peck and G. A. Briggs, “A scanning acoustic microscope study of the small caries lesion in human enamel,” Caries Research 20, 356 (1986).CrossRefPubMedGoogle Scholar
  17. 17.
    S. D. Peck and G. A. Briggs, “The caries lesion under the scanning acoustic microscope,” Advances in Dental Research 1, 50 (1987).PubMedGoogle Scholar
  18. 18.
    S. D. Peck, J. M. Rowe, and G. A. Briggs, “Studies on sound and carious enamel with the quantitative acoustic microscope,” Journal of Dental Research 68(2), 107 (1989).CrossRefPubMedGoogle Scholar
  19. 19.
    K. Raum, K. Kempf, H. J. Hein, J. Schubert, and P. Maurer, “Preservation of microelastic properties of dentin and tooth enamel in vitro–a scanning acoustic microscopy study,” Dental Materials 23(10), 1221–1228 (2007).CrossRefPubMedGoogle Scholar
  20. 20.
    K. Raum and T. Kundu, “Ultrasonic characterization of hard tissues,” in T. Kundu (ed.) Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization(CRC Press, Boca Raton, 2003), p. 761.Google Scholar
  21. 21.
    C. S. Jorgensen and T. Kundu, “Measurement of material elastic constants of trabecular bone: a micromechanical analytic study using a 1GHz acoustic microscope,” Journal of Orthopaedic Research 20(1), 151 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    K. Hasegawa, C. H. Turner, and D. B. Burr, “Contribution of collagen and mineral to the elastic anisotropy of bone,” Calcified Tissue International 55(5), 381 (1994).CrossRefPubMedGoogle Scholar
  23. 23.
    R. M. Pidaparti and D. B. Burr, “Collagen fiber orientation and geometry effects on the mechanical properties of secondary osteons,” Journal of Biomechanics 25(8), 869 (1992).CrossRefPubMedGoogle Scholar
  24. 24.
    R. M. Pidaparti, A. Chandran, Y. Takano, and C. H. Turner, “Bone mineral lies mainly outside collagen fibrils: predictions of a composite model for osteonal bone,” Journal of Biomechanics 29(7), 909 (1996).CrossRefPubMedGoogle Scholar
  25. 25.
    Y. Takano, C. H. Turner, and D. B. Burr, “Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements,” Journal of Bone and Mineral Research 11(9), 1292 (1996).CrossRefPubMedGoogle Scholar
  26. 26.
    Y. Takano, C. H. Turner, I. Owan, R. B. Martin, S. T. Lau, M. R. Forwood, and D. B. Burr, “Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution,” Journal of Orthopaedic Research 17(1), 59 (1999).CrossRefPubMedGoogle Scholar
  27. 27.
    C. H. Turner, K. Hasegawa, W. Zhang, M. Wilson, Y. Li, and A. J. Dunipace, “Fluoride reduces bone strength in older rats,” Journal of Dental Research 74(8), 1475 (1995).CrossRefPubMedGoogle Scholar
  28. 28.
    C. H. Turner, J. Y. Rho, Y. Takano, T. Y. Tsui, and G. M. Pharr, “The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques,” Journal of Biomechanics 32(4), 437 (1999).CrossRefPubMedGoogle Scholar
  29. 29.
    K. Raum, I. Leguerney, F. Chandelier, M. Talmant, A. Saied, F. Peyrin, and P. Laugier, “Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT,” Physics in Medicine and Biology 51(3), 733–746 (2006).CrossRefPubMedGoogle Scholar
  30. 30.
    K. Raum, K. V. Jenderka, A. Klemenz, and J. Brandt, “Multilayer analysis: Quantitative scanning acoustic microscopy for tissue characterization at a microscopic scale,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 50(5), 507 (2003).CrossRefGoogle Scholar
  31. 31.
    P. Roschger, E. P. Paschalis, P. Fratzl, and K. Klaushofer, “Bone mineralization density distribution in health and disease,” Bone 42(3), 456 (2008).CrossRefPubMedGoogle Scholar
  32. 32.
    K. Raum, R. O. Cleveland, F. Peyrin, and P. Laugier, “Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps,” Physics in Medicine and Biology 51(3), 747–758 (2006).CrossRefPubMedGoogle Scholar
  33. 33.
    S. P. Kotha, C. A. DePaula, A. B. Mann, and N. Guzelsu, “High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content,” Ultrasound in Medicine and Biology 34(4), 630–637 (2008).CrossRefPubMedGoogle Scholar
  34. 34.
    S. Leicht and K. Raum, “Acoustic impedance changes in cartilage and subchondral bone due to primary arthrosis,” Ultrasonics 48(6–7), 613–620 (2008).CrossRefPubMedGoogle Scholar
  35. 35.
    K. Raum, J. Reisshauer, and J. Brandt, “Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy,” Journal of Biomedical Materials Research A 71(3), 430–438 (2004).Google Scholar
  36. 36.
    D. Rohrbach, S. Lakshmanan, F. Peyrin, and K. Raum, “Spatial distribution of tissue mineralization and anisotropic tissue elastic constants in human femoral cortical bone,” presented at the WC 2009, IFMBE Proceedings, Munich, 2009.Google Scholar
  37. 37.
    K. Raum, T. Hofmann, I. Leguerney, A. Saied, F. Peyrin, L. Vico, and P. Laugier, “Variations of microstructure, mineral density and tissue elasticity in B6/C3H mice,” Bone 41(6), 1017–1024 (2007).CrossRefPubMedGoogle Scholar
  38. 38.
    K. Raum, I. Leguerney, F. Chandelier, E. Bossy, M. Talmant, A. Saied, F. Peyrin, and P. Laugier, “Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements,” Ultrasound in Medicine and Biology 31(9), 1225–1235 (2005).CrossRefPubMedGoogle Scholar
  39. 39.
    A. Saied, K. Raum, I. Leguerney, and P. Laugier, “Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone,” Bone 43(1), 187–194 (2008).CrossRefPubMedGoogle Scholar
  40. 40.
    C. Hellmich, F. J. Ulm, and L. Dormieux, “Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Arguments from a multiscale approach,” Biomechanics and Modeling Mechanobiology 2(4), 219 (2004).Google Scholar
  41. 41.
    J. Y. Rho, P. Zioupos, J. D. Currey, and G. M. Pharr, “Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation,” Journal of Biomechanics 35(2), 189 (2002).CrossRefPubMedGoogle Scholar
  42. 42.
    J. Xu, J. Y. Rho, S. R. Mishra, and Z. Fan, “Atomic force microscopy and nanoindentation characterization of human lamellar bone prepared by microtome sectioning and mechanical polishing technique,” Journal of Biomedical Materials Research 67A(3), 719 (2003).CrossRefGoogle Scholar
  43. 43.
    P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,” Journal of Biomechanics 32(10), 1005 (1999).CrossRefPubMedGoogle Scholar
  44. 44.
    T. Hofman, K. Raum, I. Leguerney, A. Saied, F. Peyrin, L. Vico, and P. Laugier, “Assessment of bone structure and acoustic impedance in C3H and BL6 mice using high resolution scanning acoustic microscopy,” Ultrasonics 44(Suppl 1), e1307–1311 (2006).CrossRefPubMedGoogle Scholar
  45. 45.
    F. Rupin, A. Saied, D. Dalmas, F. Peyrin, S. Haupert, E. Barthel, G. Boivin, and P. Laugier, “Experimental determination of Young modulus and Poisson ratio in cortical bone tissue using high resolution scanning acoustic microscopy and nanoindentation,” Journal of the Acoustical Society of America 123(5), 3785–3786 (2008).CrossRefGoogle Scholar
  46. 46.
    M. M. Giraud-Guille, “Twisted plywood architecture of collagen fibrils in human compact bone osteons,” Calcified Tissue International 42(3), 167 (1988).Google Scholar
  47. 47.
    M. M. Giraud-Guille, L. Besseau, and R. Martin, “Liquid crystalline assemblies of collagen in bone and in vitro systems,” Journal of Biomechanics 36(10), 1571 (2003).Google Scholar
  48. 48.
    T. Hofmann, F. Heyroth, H. Meinhard, W. Franzel, and K. Raum, “Assessment of composition and anisotropic elastic properties of secondary osteon lamellae,” Journal of Biomechanics 39(12), 2282–2294 (2006).CrossRefPubMedGoogle Scholar
  49. 49.
    Q. Grimal, K. Raum, A. Gerisch, and P. Laugier, “Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale,” Computer Methods in Biomechanics and Biomedical Engineering 11(2), 147–157 (2008).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Julius-Wolff Institute and Berlin-Brandenburg School for Regenerative TherapiesCharité – Universitätsmedizin BerlinBerlinGermany

Personalised recommendations