Advertisement

Nonlinear Acoustics for Non-invasive Assessment of Bone Micro-damage

  • Marie MullerEmail author
  • Guillaume Renaud
Chapter

Abstract

This chapter presents the state of art in the field of nonlinear ultrasound applied to bone micro-damage assessment. An increasing number of groups have been conducting research in the past years on this particular topic, motivated by the particular sensitivity shown by nonlinear ultrasound methods in industrial materials and geomaterials. Some of the results obtained recently on bone damage assessment in vitrousing various nonlinear ultrasound techniques are presented. In particular, results obtained with higher harmonic generation, Dynamic Acousto-Elastic Testing (DAET), Nonlinear Resonant Ultrasound Spectroscopy (NRUS), and Nonlinear Wave Modulation Spectroscopy (NWMS) techniques are detailed. All those results show a very good potential for nonlinear ultrasound techniques for bone damage assessment. They should benefit from a proper quantification of the relationship between micro-damage and nonlinear ultrasound parameters. This could be obtained through a thorough statistical study which remains to be achieved. A practical implementation of an in vivosetup also remains to be conducted.

Keywords

Bone micro-damage Fracture risk assessment Nonlinear ultrasound Harmonic generation Dynamic Acousto-Elastic Testing Nonlinear Resonant Ultrasound Spectroscopy Nonlinear Wave Modulation Spectroscopy 

References

  1. [1]
    V.E. Nazarov, L.E. Ostrovsky, I.A. Soustova, A. Sutin.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50, 65–73 (1988)Google Scholar
  2. [2]
    R.A. Guyer and P.A. Johnson.: Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Phys. Today 52, 30–35 (1999)Google Scholar
  3. [3]
    E.F. Morgan, O.C. Yeh, and T.M. Keaveny.: Damage in trabecular bone at small strains. Eur. J. Morphol. 42(1–2), 13–21 (2005)Google Scholar
  4. [4]
    D. Vashishth.: Hierarchy of bone microdamage at multiple length scales. Int. J. Fatigue 29, 1024–1033 (2007)Google Scholar
  5. [5]
    P.H. Nicholson and M.L. Bouxsein.: Quantitative ultrasound does not reflect mechanically induced damage in human cancellous bone. J. Bone Miner. Res. 15(12), 2467–2472 (2000)Google Scholar
  6. [6]
    K.R. McCall and R.A. Guyer.: Equation of state and wave-propagation in hysteretic nonlinear elastic-materials. J. Geophys. Res. Solid Earth 99(B12), 23887–23897 (1994)Google Scholar
  7. [7]
    M.F. Hamilton and D.T. Blackstock.: Nonlinear Acoustics, Theory and Applications. Academic Press, New York (1998)Google Scholar
  8. [8]
    M.F. Hamilton and D.T. Blackstock.: On the coefficient of nonlinearity β in nonlinear acoustics. J. Acoust. Soc. Am. 83(1), 74–77 (1988)Google Scholar
  9. [9]
    R.T. Beyer.: Parameter of nonlinearity in fluids. J. Acoust. Soc. Am. 32(6), 719–721 (1960)Google Scholar
  10. [10]
    V.Y. Zaitsev, A. Dyskin, E. Pasternak, and L. Matveev.: Microstructure-induced giant elastic nonlinearity of threshold origin: Mechanism and experimental demonstration. Europhys. Lett. 86(4), 44005 (2009)Google Scholar
  11. [11]
    W.L. Morris, O. Buck, and R.V. Inman.: Acoustic harmonic generation due to fatigue damage in high-strength aluminium. J. Appl. Phys. 50(11), 6737–6741 (1979)Google Scholar
  12. [12]
    J.Y. Kim, L.J. Jacobs, J. Qu, and J.W. Littles.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. J. Acoust. Soc. Am. 120(3), 1266–1273 (2006)Google Scholar
  13. [13]
    J. Herrmann, J.Y. Kim, L.J. Jacobs, J. Qu, J.W. Littles, and M.F. Savage.: Assessment of material damage in a nickel-base superalloy using nonlinear rayleigh surface waves. J. Appl. Phys. 99(12), 124913, 1–8 (2006)Google Scholar
  14. [14]
    C.S. Kim, I.K. Park, and K.Y. Jhang.: Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E Int 42, 204–209 (2009)Google Scholar
  15. [15]
    S. Baby, B.N. Kowmudi, C.M. Omprakash, D.V.V. Satyanarayana, K. Balasubramaniam, and V. Kumar.: Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique. Scripta Mater. 59(8), 818–821 (2008)Google Scholar
  16. [16]
    K.Y. Jhang.: Nonlinear ultrasonic techniques for nondestructive assessment of microdamage in material: A review. Int. J. Precis. Eng. Manuf. 10(1), 123–135 (2009)Google Scholar
  17. [17]
    L. Hoff, K.G. Oygarden, E.K. Hagen, and J.-A. Falch.: Diagnosis of osteoporosis using nonlinear ultrasound. Ultrasonics IEEE Symp. 1, 1010–1013 (2003)Google Scholar
  18. [18]
    H.E. Engan, K.A. Ingebrigtsen, K.G. Oygarden, E.K. Hagen, and L. Hoff.: Nonlinear ultrasound detection of osteoporosis. Ultrasonics IEEE Symposium, Vancouver 2096–2099 (2006)Google Scholar
  19. [19]
    T.L. Norman, T.M. Little, and Y.N. Yeni.: Age-related changes in porosity and mineralization and in-service damage accumulation. J. Biomech. 41(13), 2868–2873 (2008)Google Scholar
  20. [20]
    M.E. Arlot, B. Burt-Pichat, J.P. Roux, D. Vashishth, M.L. Bouxsein, and P.D. Delmas.: Microarchitecture influences microdamage accumulation in human vertebral trabecular bone. J. Bone Miner. Res. 23(10), 1613–1618 (2008)Google Scholar
  21. [21]
    L. Ostrovsky and P. Johnson.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento. 24, 1–46 (2001)Google Scholar
  22. [22]
    G. Renaud, S. Callé, J.-P. Remenieras, and M. Defontaine.: Non-linear acoustic measurements to assess crack density in trabecular bone. Int. J. Nonlinear Mech. 43(3), 194–200 (2008)Google Scholar
  23. [23]
    P.W. Bridgman.: Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47, 441–558 (1912)Google Scholar
  24. [24]
    J.C. Swanson.: Pressure coefficients of acoustic velocity for nine organic liquids. J. Chem. Phys. 2, 689–693 (1934)Google Scholar
  25. [25]
    F. Birch.: The effect of pressure on the modulus of rigidity of several metals and glasses. J. Appl. Phys. 8, 129–133 (1937)Google Scholar
  26. [26]
    J.M. Ide.: The velocity of sound in rocks and glasses as a function of temperature. J. Geol. 45, 689–716 (1937)Google Scholar
  27. [27]
    M.A. Biot.: The influence of initial stress on elastic waves. J. Appl. Phys. 11, 522–530 (1940)Google Scholar
  28. [28]
    R.A. Toupin and B. Bernstein.: Sound waves in deformed perfectly elastic materials. acoustoelastic effect. J. Acoust. Soc. Am. 33(2), 216–225 (1961)Google Scholar
  29. [29]
    J.R. Pellam and J.K. Galt.: Ultrasonic propagation in liquids: I. Application of pulse technique to velocity and absorption measurements at 15 megacycles. J. Chem. Phys. 14(10), 608–614 (1946)Google Scholar
  30. [30]
    D. Lazarus.: The variation of the adiabatic elastic constants of KCl, NaCl, CuZn, Cu, and Al with pressure to 10,000 bars. Phys. Rev. 76, 545–553 (1949)Google Scholar
  31. [31]
    G. Holton.: Ultrasonic propagation in liquids under high pressures: Velocity measurements on water. J. Appl. Phys. 22(12), 1407–1413 (1951)Google Scholar
  32. [32]
    D.S. Hughes and J.L. Kelly.: Second-order elastic deformation of solids. Phys. Rev. 92(5), 1145–1149 (1953)Google Scholar
  33. [33]
    G.A. Gist.: Fluid effects on velocity and attenuation in sandstones. J. Acoust. Soc. Am. 96, 1158–1173 (1994)Google Scholar
  34. [34]
    T. Bourbié, O. Coussy, and B. Zinszner.: Acoustics of porous media. Institut Français du Pétrole publications, Ed TechniP, Paris (1987)Google Scholar
  35. [35]
    K.W. Winkler and W.F. Murphy.: Acoustic velocity and attenuation in porous rocks. In T.J. Ahrens (ed.) Rock Physics and Phase relations, A Handbook of Physical Constants, American Geophysical Union, Washington, DC, 20–34 (1995)Google Scholar
  36. [36]
    N. Ichida, T. Sato, and M. Linzer.: Imaging the nonlinear parameter of the medium. Ultrason. Imaging 5, 295–299 (1983)Google Scholar
  37. [37]
    G. Gremaud, M. Bujard, and W. Benoit.: The coupling technique: A two-wave acoustic method for the study of dislocation dynamics. J. Appl. Phys. 61(5), 1795–1805 (1987)Google Scholar
  38. [38]
    G. Renaud, S. Callé, J.-P. Remenieras, and M. Defontaine.: Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation. IEEE Trans. UFFC 55(7), 1497–1507 (2008)Google Scholar
  39. [39]
    G. Renaud, S. Callé, and M. Defontaine.: Remote dynamic acoustoelastic testing: Elastic and dissipative acoustic nonlinearities measured under hydrostatic tension and compression. Appl. Phys. Lett. 94(1), 011905 (2009)Google Scholar
  40. [40]
    M. Rupprecht, P. Pogoda, M. Mumme, J.M. Rueger, K. Pschel, and M. Amling.: Bone microarchitecture of the calcaneus and its changes in aging: A histomorphometric analysis of 60 human specimens. J. Orthop. Res. 24(4), 664–674 (2006)Google Scholar
  41. [41]
    D. Donskoy and A. Sutin.: Nonlinear acoustic parameter of trabecular bone. J. Acoust. Soc. Am. 102(5), 3155 (1997)Google Scholar
  42. [42]
    R.A. Guyer and P.A. Johnson.: Nonlinear Mesoscopic Elasticity. Wiley, New York (2009)Google Scholar
  43. [43]
    N.L. Fazzalari, J.S. Kuliwaba, and M.R. Forwood.: Cancellous bone microdamage in the proximal femur: Influence of age and osteoarthritis on damage morphology and regional distribution. Bone 31(6), 697–702 (2002)Google Scholar
  44. [44]
    H. Moreschi, S. Callé, S. Guerard, D. Mitton, G. Renaud, and M. Defontaine.: Monitoring of trabecular bone induced microdamage using a nonlinear wave-coupling technique. In Proceedings of the IEEE-UFFC Ultrasonics Symposium, Rome (2009)Google Scholar
  45. [45]
    T.C. Lee, S. Mohsin, D. Taylor, R. Parkesh, T. Gunnlaugsson, F.J. O’Brien, M. Giehl, and W. Gowin.: Detecting microdamage in bone. J. Anat. 203, 161–172 (2003)Google Scholar
  46. [46]
    T.L.A. Moore and L.J. Gibson.: Fatigue microdamage in bovine trabecular bone. J. Biomech. Eng. 125, 769–776 (2003)Google Scholar
  47. [47]
    H. Moreschi, S. Callé, S. Guérard, D. Mitton, G. Renaud, and M. Defontaine.: Monitoring trabecular bone microdamage using Dynamic AcoustoElastic Testing method. Proc. IMechE vol. 225, Part H: J. Eng. Med. (2010)Google Scholar
  48. [48]
    K. Hadley.: Comparison of calculated and observed crack densities and seismic velocities in westerly granite. J. Geophys. Res. 81(20), 3484–3494 (1976)Google Scholar
  49. [49]
    S. Peacock, C. McCann, J. Sothcott, and T.R. Astin.: Seismic velocities in fractured rocks: An experimental verification of Hudson’s theory. Geophys. Prospect. 42(1), 27–80 (1994)Google Scholar
  50. [50]
    K. Van Den Abeele, P.Y. Le Bas, B. Van Damme, and T. Katkowski.: Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126(3), 963–972 (2009)Google Scholar
  51. [51]
    W.M. Visscher, A. Migliori, T.M. Bell, and R.A. Reinert.: On the normal-modes of free-vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 90(4), 2154–2162 (1991)Google Scholar
  52. [52]
    K. Van Den Abeele, J. Carmeliet, J.A. Tencate, P.A. Johnson.: Nonlinear wave modulation spectroscopy (NWMS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy. Res. Nondestr. Eval. 12, 31–42 (2000)Google Scholar
  53. [53]
    R.A. Guyer, K.R. McCall, G.N. Boitnott, L.B. Hilbert, and T.J. Plona.: Quantitative use of Preisach-Mayergoyz space to find static and dynamic elastic moduli in rock. J. Geophys. Res. 102, 8105–8120 (1997)Google Scholar
  54. [54]
    P.A. Johnson, B. Zinszner, P. Rasolofosaon, F. Cohen-Tenoudji, and K.V.D. Abeele.: Dynamic measurements of the nonlinear elastic parameter in rock under varying conditions. J. Geophys. Res. 109, B02202 (2004)Google Scholar
  55. [55]
    M. Muller, A. Sutin, R.A. Guyer, M. Talmant, P. Laugier, and P.A. Johnson.: Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone. J. Acoust. Soc. Am. 118, 3946–3952 (2005)Google Scholar
  56. [56]
    M. Muller, A. D’Hanens, D. Mitton, M. Talmant, P. Laugier, and P.A. Johnson.: Nonlinear ultrasound can detect accumulated damage in human bone. J. Biomech. 41(5), 1062–1068 (2008)Google Scholar
  57. [57]
    P.A. Johnson, B. Zinszner, and P.N.J. Rasolofosaon.: Resonance and nonlinear elastic phenomena in rock. J. Geophys. Res. 101(B5), 11553–11564 (1996)Google Scholar
  58. [58]
    W.E. Caler and D.R. Carter.: Bone creep-fatigue damage accumulation. J. Biomech. 22, 625–635 (1989)Google Scholar
  59. [59]
    D.R. Carter, W.E. Caler, D.M. Spengler, and V.H. Frankel.: Fatigue behaviour of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. Scand. 52, 481–490 (1981)Google Scholar
  60. [60]
    M.B. Schaffler, K. Choi, and C. Milgrom.: Aging and matrix microdamage accumulation in human compact bone. Bone 17, 521–525 (1995)Google Scholar
  61. [61]
    K. Van Den Abeele, J. Carmeliet, J.A. Tencate, and P.A. Johnson.: Nonlinear wave modulation spectroscopy (NWMS) techniques to discern material damage, Part I: Nonlinear wave modulation spectroscopy (NWMS). Res. Nondestr. Eval. 12, 17–30 (2000)Google Scholar
  62. [62]
    V. Zaitsev, V. Nazarov, V. Gusev, and B. Castagnede.: Novel nonlinear-modulation acoustic technique for crack detection. NDT&E Int. 30, 184–194 (2006)Google Scholar
  63. [63]
    V.V. Kazakov, A. Sutin, P.A. Johnson.: Sensitive imaging of an elastic nonlinear wave-scattering source in a solid. Appl. Phys. Lett. 81(4), 646–648 (2002)Google Scholar
  64. [64]
    T.J. Ulrich, P.A. Johnson, M. Muller, D. Mitton, M. Talmant, P. Laugier.: Application of nonlinear dynamics to monitoring progressive fatigue damage in human bone. Appl. Phys. Lett. 91, 213901 (2007)Google Scholar
  65. [65]
    K. Zacharias, E. Balabanidou, I. Hatzokos, I.T. Rekanos, and A. Trochidis.: Microdamage evaluation in trabecular bone based on nonlinear ultrasound vibro-modulation (NUVM). J. Biomech. 42, 581–586 (2009)Google Scholar
  66. [66]
    V.E. Gusev, V. Tournat.: Amplitude- and frequency-dependent nonlinearities in the presence of thermally induced transitions in the Preisach model of acoustic hysteresis. Phys. Rev. B 72, 054104 (2005)Google Scholar
  67. [67]
    R.A. Guyer, K.R. McCall, G.N. Boitnott.: Hysteresis, discrete memory, and nonlinear-wave propagation in rock – A new paradigm. Phys. Rev. Lett. 74(17), 3491–3494 (1995)Google Scholar
  68. [68]
    F. Preisach.: Uber die magnetische Nachwirkung. Z. Phys. 94, 277–302 (1935)Google Scholar
  69. [69]
    I.D. Mayergoyz.: Hysteresis models from the mathematical and control theory points of view. J. Appl. Phys. 57, 3803–3805 (1985)Google Scholar
  70. [70]
    M. Scalerandi, P.P. Delsanto, V. Agostini, K. Van Den Abeele, P. A. Johnson.: Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids. J. Acoust. Soc. Am. 113, 3049–3059 (2003)Google Scholar
  71. [71]
    K. Van Den Abeele, F. Schubert, V. Aleshin, F. Windels, and J. Carmeliet.: Resonant bar simulations in media with localized damage. Ultrasonics 42, 1017–1024 (2004)Google Scholar
  72. [72]
    P. Fellinger, R. Marklein, K.J. Langenberg, and S. Klaholz.: Numerical modeling of elastic-wave propagation and scattering with EFIT – Elastodynamic finite integration technique. Wave Motion 21, 47–66 (1995)Google Scholar
  73. [73]
    L.D. Landau, and E.M. Lifshitz, Theory of Elasticity, 3rd edn. Pergamon, New York (1986)Google Scholar
  74. [74]
    V. Tournat, V.E. Gusev, V.Y. Zaitsev, V.E. Nazarov, and B. Castagnède.: Probing granular media via nonlinear acoustic effects. Reviex Progress in QNDE. 24, 369–376 (2005)Google Scholar
  75. [75]
    I.Y. Belyaeva, L.A. Ostrovsky, V.Y. Zaitsev.: Microstructure indiced nonlinearity of unconsolidated rocks as related to seismic diagnostics problems. Nonlinear Process. Geophys. 4, 4–10 (1997)Google Scholar
  76. [76]
    R.B. Gordon and L.A. Davis.: Velocity and attenuation of seismic waves in imperfectly elastic rock. J. Geophys. Res. 73, 3917–3935 (1968)Google Scholar
  77. [77]
    T.C. Lee, E.R. Myers, and W.C. Hayes.: Fluorescence aided detection of microdamage in compact bone. J. Anat. 193(2), 179–184 (1998)Google Scholar
  78. [78]
    E.F. Morgan, O.C. Yeh, W.C. Chang, and T.M. Keaveny.: Nonlinear behavior of trabecular bone at small strains. J. Biomech. Eng. 123, 1–9 (2001)Google Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Institut LangevinUniversité Denis DiderotParisFrance
  2. 2.Imagerie et Cerveau, UMR INSERM U930, CNRS ERL3106Université François RabelaisToursFrance
  3. 3.Laboratoire d’Imagerie Paramétrique UMR CNRS7623Université Pierre et Marie CurieParisFrance

Personalised recommendations