Ultrasonic Monitoring of Fracture Healing

  • Vasilios C. ProtopappasEmail author
  • Maria G. Vavva
  • Konstantinos N. Malizos
  • Demos Polyzos
  • Dimitrios I. Fotiadis


Quantitative ultrasound has been used to evaluate bone fracture healing for over five decades. Animal and clinical studies have showed that the propagation velocity and attenuation are significantly different between fresh fractures, bone unions, and delayed unions or non-unions. Follow-up measurements have also indicated that the velocity typically increases during healing which makes feasible to monitor the healing progress and early distinguish between normal healing and delayed unions. Researchers have recently used computer simulations aiming to gain insight into the underlying mechanisms of wave propagation in healing bones and interpret real measurements. In this chapter we present the state of the art in the field and provide an extensive review of the relevant literature.


Bone phantoms Callus tissue First-arriving signals (FAS) Fracture healing Guided waves Monitoring Non-union Numerical simulations Propagation velocity Time-frequency analysis 


  1. [1]
    T. J. Blokhuis, J. H. de Bruine, J. A. Bramer, F. C. den Boer, F. C. Bakker, P. Patka, H. J. Haarman, and R. A. Manoliu, “The reliability of plain radiography in experimental fracture healing,” Skeletal Radiol. 30(3), 151–156 (2001).CrossRefPubMedGoogle Scholar
  2. [2]
    L. E. Claes, and J. Cunningham, “Monitoring the mechanical properties of healing bone,” Clin. Orthop. Relat. Res. 467(8), 1964–1971 (2009).CrossRefPubMedGoogle Scholar
  3. [3]
    J. L. Cunningham, J. Kenwright, and C. J. Kershaw, “Biomechanical measurement of fracture healing,” J. Med. Eng. Technol. 14(3), 92–101 (1990).CrossRefPubMedGoogle Scholar
  4. [4]
    J. B. Richardson, J. L. Cunningham, A. E. Goodship, B. T. O’Connor, and J. Kenwright, “Measuring stiffness can define healing of tibial fractures,” J. Bone Joint Surg. Br. 76(3), 389–394 (1994).PubMedGoogle Scholar
  5. [5]
    Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “Assessment of fracture healing in the tibia using the impulse response method,” J. Orthop. Trauma 10(1), 50–62 (1996).CrossRefPubMedGoogle Scholar
  6. [6]
    G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, “Monitoring of fracture healing by lateral and axial vibration analysis,” J. Biomech. 23(4), 323–330 (1990).CrossRefPubMedGoogle Scholar
  7. [7]
    Y. Hirasawa, S. Takai, W. C. Kim, N. Takenaka, N. Yoshino, and Y. Watanabe, “Biomechanical monitoring of healing bone based on acoustic emission technology,” Clin. Orthop. Relat. Res. 402, 236–244 (2002).CrossRefPubMedGoogle Scholar
  8. [8]
    V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, “Ultrasonic monitoring of bone fracture healing,” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1243–1255 (2008).CrossRefGoogle Scholar
  9. [9]
    L. P. Floriani, N. T. Debervoise, and G. W. Hyatt, “Mechanical properties of healing bone by use of ultrasound,” Surg. Forum 18, 468–470 (1967).Google Scholar
  10. [10]
    W. F. Abendschein, and G. W. Hyatt, “Ultrasonics and physical properties of healing bone,” J. Trauma 12(4), 297–301 (1972).CrossRefPubMedGoogle Scholar
  11. [11]
    P. J. Gill, G. Kernohan, I. N. Mawhinney, R. A. Mollan, and R. McIlhagger, “Investigation of the mechanical properties of bone using ultrasound,” Proc. Inst. Mech. Eng. 203, 61–63 (1989).Google Scholar
  12. [12]
    E. Maylia and L. D. Nokes, “The use of ultrasonics in orthopaedics – a review,” Technol. Health Care 7(1), 1–28 (1999).PubMedGoogle Scholar
  13. [13]
    S. Saha, V. V. Rao, V. Malakanok, and J.A. Albright, “Quantitative measurement of fracture healing by ultrasound,” in Biomed. Engin. I: Recent Developments, Pergamon Press, New York, 247–249 (1982).Google Scholar
  14. [14]
    K. N. Malizos, A. A. Papachristos, V. C. Protopappas, and D. I. Fotiadis, “Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model,” Bone 38(4), 530–539 (2006).CrossRefPubMedGoogle Scholar
  15. [15]
    V. C. Protopappas, D. A. Baga, D. I. Fotiadis, A. C. Likas, A. A. Papachristos, and K. N. Malizos, “An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones,” IEEE Trans. Biomed. Eng. 52(9), 1597–1608 (2005).CrossRefPubMedGoogle Scholar
  16. [16]
    G. T. Anast, T. Fields, and I. M. Siegel, “Ultrasonic technique for the evaluation of bone fractures,” Am. J. Phys. Med. 37, 157–159 (1958).PubMedGoogle Scholar
  17. [17]
    J. Saulgozis, I. Pontaga, G. Lowet, and G. Van der Perre, “The effect of fracture and fracture fixation on ultrasonic velocity and attenuation,” Physiol. Meas. 17(3), 201–211 (1996).CrossRefPubMedGoogle Scholar
  18. [18]
    M. Gerlanc, D. Haddad, G. W. Hyatt, J. T. Langloh, and P. S. Hilaire, “Ultrasonic study of normal and fractured bone,” Clin. Orthop. Relat. Res. 111, 175–180 (1975).CrossRefPubMedGoogle Scholar
  19. [19]
    N. Maffulli and A. Thornton, “Ultrasonographic appearance of external callus in long-bone fractures,” Injury 26(1), 5–12 (1995).CrossRefPubMedGoogle Scholar
  20. [20]
    M. Risselada, B. H. van, M. Kramer, K. Chiers, L. Duchateau, P. Verleyen, and J. H. Saunders, “Evaluation of nonunion fractures in dogs by use of B-mode ultrasonography, power Doppler ultrasonography, radiography, and histologic examination,” Am. J. Vet. Res. 67(8), 1354–1361, (2006).Google Scholar
  21. [21]
    S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples,” Bone 40(3), 656–661 (2007).CrossRefPubMedGoogle Scholar
  22. [22]
    S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study,” Ultrasound Med. Biol. 34(3), 454–462 (2008).CrossRefPubMedGoogle Scholar
  23. [23]
    S. P. Dodd, A. W. Miles, S. Gheduzzi, V. F. Humphrey, and J. L. Cunningham, “Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture,” Comput. Methods Biomech. Biomed. Eng. 10, 371–375 (2007).CrossRefGoogle Scholar
  24. [24]
    S. Gheduzzi, S. P. Dodd, A. W. Miles, V. F. Humphrey, and J. L. Cunningham, “Numerical and experimental simulation of the effect of long bone fracture healing stages on ultrasound transmission across an idealized fracture,” J. Acoust. Soc. Am. 126(2), 887–894 (2009).CrossRefPubMedGoogle Scholar
  25. [25]
    V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, “Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones,” J. Acoust. Soc. Am. 121(6), 3907–3921 (2007).CrossRefPubMedGoogle Scholar
  26. [26]
    V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound Med. Biol. 32(5), 693–708 (2006).CrossRefPubMedGoogle Scholar
  27. [27]
    J. L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, Cambridge, 1999).Google Scholar
  28. [28]
    G. Barbieri, C. Barbieri, P. de Matos, C. Pelá, N. Mazzer, “Ultrasonometric evaluation of bone healing: experimental study using a model of diaphyseal transverse osteotomy of sheep tibiae,” Ultrasound Med. Biol. 32(6), 875–882 (2006).CrossRefPubMedGoogle Scholar
  29. [29]
    G. Lowet and G. Van der Perre, “Ultrasound velocity measurement in long bones: measurement method and simulation of ultrasound wave propagation,” J. Biomech. 29(10), 1255–1262, (1996).CrossRefPubMedGoogle Scholar
  30. [30]
    E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study,” J. Acoust. Soc. Am. 112(1), 297–307 (2002).CrossRefPubMedGoogle Scholar
  31. [31]
    C. F. Njeh, J. R. Kearton, D. Hans, and C. M. Boivin, “The use of quantitative ultrasound to monitor fracture healing: a feasibility study using phantoms,” Med. Eng. Phys. 20(10), 781–786 (1998).CrossRefPubMedGoogle Scholar
  32. [32]
    J. J Kaufman, L. Gangming, and R. S. Siffert, “Ultrasound simulation in bone,” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1205–1218 (2008).Google Scholar
  33. [33]
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “The effect of boundary conditions on guided wave propagation in two-dimensional models of healing bone,” Ultrasonics 48, 598–606 (2008).CrossRefPubMedGoogle Scholar
  34. [34]
    M. G. Vavva, V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos “Ultrasound velocity measurements on healing bones using the external fixation pins: a two-dimensional simulation study,” J. Serbian Soc. Comput. Mech. 2(2), 1–15 (2008).Google Scholar
  35. [35]
    P. Moilanen, “Ultrasonic guided waves in bone” IEEE Trans. Ultras. Ferroelectr. Freq. Control 55(6), 1277–1286 (2008).CrossRefGoogle Scholar
  36. [36]
    I. Mirsky, “Wave propagation in transversely isotropic circular cylinders Part I: theory,” J. Acoust. Soc. Am. 37(6), 1016–1021 (1965).CrossRefGoogle Scholar
  37. [37]
    X. Guo, D. Yang, D. Zhang, W. Li, Y. Qiu, and J. Wu, “Quantitative evaluation of fracture healing process of long bones using guided ultrasound waves: a computational feasibility study,” J. Acoust. Soc. Am. 125(5), 2834–2837 (2009).CrossRefPubMedGoogle Scholar
  38. [38]
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone,” J. Acoust. Soc. Am. 125(5), 3414–3427 (2009).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Vasilios C. Protopappas
    • 1
    Email author
  • Maria G. Vavva
    • 2
  • Konstantinos N. Malizos
    • 3
  • Demos Polyzos
    • 1
  • Dimitrios I. Fotiadis
    • 4
  1. 1.Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece
  2. 2.Research Academic Computer Technology InstituteUniversity Campus of PatrasPatrasGreece
  3. 3.Department of Orthopaedic Surgery & Musculoskeletal TraumaUniversity Hospital of Larissa, School of Health Sciences, University of ThessalyLarissaGreece
  4. 4.Unit of Medical Technology and Intelligent Information Systems, Department of Material Sciences and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations