Advertisement

Linear Ultrasonic Properties of Cortical Bone: In Vitro Studies

  • Guillaume HaïatEmail author
Chapter

Abstract

An increasing interest is placed in the ultrasonic characterization of cortical bone because its quality has now become accessible. The aim of this chapter is to review the results obtained in the literature with the different experimental approaches carried out in vitro. Different quantitative ultrasonic bone parameters such as the ultrasonic velocity and the attenuation coefficient are studied. The frequency dependence of attenuation (which corresponds to broadband ultrasonic attenuation, BUA) and of phase velocity (velocity dispersion) is investigated in particular. The dependence of all ultrasonic parameters on the direction of propagation relatively to the bone axis as well as to bone properties such as the type of microstructure, volumetric bone mineral density and mass density is also reviewed. The results presented in this chapter show the potentiality of ultrasonic parameters to assess cortical bone properties.

Keywords

Anisotropic medium Attenuation Bone mineral density Broadband ultrasonic attenuation Cortical bone Dispersion Dispersive medium Haversian structure Heterogeneous medium Homogenized mechanical properties Kramers-Kronig relationships Microstructure Multiscale medium Osteons Phase velocity Plexiform Quantitative ultrasound imaging Speed of sound Structure Transverse transmission Viscoelasticity 

References

  1. [1].
    H. Rico, “The therapy of osteoporosis and the importance of cortical bone,” Calcif Tissue Int 61, 431–432 (1997).CrossRefPubMedGoogle Scholar
  2. [2].
    S. C. Cowin, Bone Mechanics Handbook, 2nd ed. (CRC Press, Boca Raton, 2001).Google Scholar
  3. [3].
    P. M. Mayhew, C. D. Thomas, J. G. Clement, N. Loveridge, T. J. Beck, W. Bonfield, C. J. Burgoyne, and J. Reeve, “Relation between age, femoral neck cortical stability, and hip fracture risk,” Lancet 366(9480), 129–135 (2005).CrossRefPubMedGoogle Scholar
  4. [4].
    M. Grynpas, “Age and disease-related changes in the mineral of bone,” Calcif Tissue Int 53, S57–64 (1993).CrossRefPubMedGoogle Scholar
  5. [5].
    J. D. Currey, “The relationship between the stiffness and the mineral content of bone,” J Biomech 2(4), 477–480 (1969).CrossRefPubMedGoogle Scholar
  6. [6].
    J. Foldes, A. M. Parfitt, M. S. Shih, D. S. Rao, and M. Kleerekoper, “Structural and geometric changes in iliac bone: relationship to normal aging and osteoporosis,” J Bone Miner Res 6(7), 759–766 (1991).CrossRefPubMedGoogle Scholar
  7. [7].
    E. Bossy, M. Talmant, M. Defontaine, F. Patat, and P. Laugier, “Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials,” IEEE Trans Ultrason Ferroelectr Freq Control 51(1), 71–79 (2004).CrossRefPubMedGoogle Scholar
  8. [8].
    R. Barkmann, E. Kantorovich, C. Singal, D. Hans, H. K. Genant, M. Heller, and C. C. Gluer, “A new method for quantitative ultrasound measurements at multiple skeletal sites: first results of precision and fracture discrimination,” J Clin Densitom 3(1), 1–7 (2000).CrossRefPubMedGoogle Scholar
  9. [9].
    R. Barkmann, S. Lusse, B. Stampa, S. Sakata, M. Heller, and C. C. Gluer, “Assessment of the geometry of human finger phalanges using quantitative ultrasound in vivo,” Osteoporos Int 11(9), 745–755 (2000).CrossRefPubMedGoogle Scholar
  10. [10].
    I. Mano, K. Horii, S. Takai, T. Suzaki, H. Nagaoka, and T. Otani, “Development of novel ultrasonic bone densitometry using acoustic parameters of cancellous bone for fast and slow waves,” Jpn J Appl Phys 45(5B), 4700–4702 (2006).Google Scholar
  11. [11].
    V. Sansalone, S. Naili, V. Bousson, C. Bergot, F. Peyrin, J. D. Laredo, and G. Haïat, “Determination of the heterogeneous anisotropic elastic properties of human femoral bone: from nanoscopic to organ scale,” J Biomech 43(10), 1857–1863 (2010).CrossRefPubMedGoogle Scholar
  12. [12].
    V. Bousson, A. Meunier, C. Bergot, E. Vicaut, M. A. Rocha, M. H. Morais, A. M. Laval-Jeantet, and J. D. Laredo, “Distribution of intracortical porosity in human midfemoral cortex by age and gender,” J Bone Miner Res 16(7), 1308–1317 (2001).CrossRefPubMedGoogle Scholar
  13. [13].
    C. D. Thomas, S. A. Feik, and J. G. Clement, “Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences,” J Anat 206(2), 115–125 (2005).CrossRefPubMedGoogle Scholar
  14. [14].
    S. Naili, M.-B. Vu, Q. Grimal, M. Talmant, C. Desceliers, C. Soize, and G. Haïat, “Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: application to axial transmission,” J Acoust Soc Am 127(4), 2622–2634 (2010).CrossRefPubMedGoogle Scholar
  15. [15].
    G. Haïat, S. Naili, Q. Grimal, M. Talmant, C. Desceliers, and C. Soize, “Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission,” J Acoust Soc Am 125(6), 4043–5052 (2009).CrossRefPubMedGoogle Scholar
  16. [16].
    J. Y. Rho, “An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone,” Ultrasonics 34(8), 777–783 (1996).CrossRefPubMedGoogle Scholar
  17. [17].
    H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation in human cortical bone-II. Measurements of elastic properties and microhardness,” J Biomech 9(7), 459–464 (1976).CrossRefPubMedGoogle Scholar
  18. [18].
    X. N. Dong and X. E. Guo, “The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity,” J Biomech 37(8), 1281–1287 (2004).CrossRefPubMedGoogle Scholar
  19. [19].
    H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation in human cortical bone-I. Theoretical considerations for hexagonal symmetry,” J Biomech 9(7), 407–412 (1976).CrossRefPubMedGoogle Scholar
  20. [20].
    S. S. Mehta, O. K. Oz, and P. P. Antich, “Bone elasticity and ultrasound velocity are affected by subtle changes in the organic matrix,” J Bone Miner Res 13(1), 114–121 (1998).CrossRefPubMedGoogle Scholar
  21. [21].
    J. L. Katz and A. Meunier, “The elastic anisotropy of bone,” J Biomech 20, 1063–1070 (1987).CrossRefPubMedGoogle Scholar
  22. [22].
    B. K. Hoffmeister, S. R. Smith, S. M. Handley, and J. Y. Rho, “Anisotropy of Young’s modulus of human tibial cortical bone,” Med Biol Eng Comput 38(3), 333–338 (2000).CrossRefPubMedGoogle Scholar
  23. [23].
    R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice, “A continuous wave technique for the mesurement of the elastic properties of cortical bone,” J Biomech 17, 349–361 (1984).CrossRefPubMedGoogle Scholar
  24. [24].
    W. Van Buskirk, S. Cowin, and R. Ward, “Ultrasonic measurement of orthotropic elastic constants of bovine femoral bone,” J Biomech Eng 2, 67–72 (1981).CrossRefGoogle Scholar
  25. [25].
    D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (New York, 2000).Google Scholar
  26. [26].
    M. Sasso, G. Haïat, Y. Yamato, S. Naili, and M. Matsukawa, “Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study,” Ultrasound Med Biol 33(12), 1933–1942 (2007).CrossRefPubMedGoogle Scholar
  27. [27].
    Y. Yamato, H. Kataoka, M. Matsukawa, K. Yamazaki, T. Otani, and A. Nagano, “Distribution of longitudinal wave velocities in bovine cortical bone in vitro.,” Jpn J Appl Phys 44(6B), 4622–4624 (2005).Google Scholar
  28. [28].
    M. Locke, “Structure of long bones in mammals,” J Morphol 262(2), 546–565 (2004).CrossRefPubMedGoogle Scholar
  29. [29].
    J. Currey, “Comparative mechanical properties and histology of bone,” Am Zool 24(5), 5–12 (1984).Google Scholar
  30. [30].
    Y. Yamato, M. Matsukawa, T. Otani, K. Yamazaki, and A. Nagano, “Distribution of longitudinal wave properties in bovine cortical bone in vitro,” Ultrasonics 44(Suppl 1), e233–237 (2006).CrossRefPubMedGoogle Scholar
  31. [31].
    M. Sasso, G. Haïat, Y. Yamato, S. Naili, and M. Matsukawa, “Dependence of ultrasonic attenuation on bone mass and microstructure in bovine cortical bone,” J Biomech 41(2), 347–355 (2008).CrossRefPubMedGoogle Scholar
  32. [32].
    S. Bensamoun, J.-M. Gherbezza, J.-F. de Belleval, and M.-C. Ho Ba Tho, “Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure,” Clin Biomech 19, 639–647 (2004).Google Scholar
  33. [33].
    S. Bensamoun, M.-C. Ho Ba Tho, S. Luu, J.-M. Gherbezza, and J.-F. de Belleval, “Spatial distribution of acoustic and elastic properties of human femoral cortical bone,” J Biomech 37, 503–510 (2004).Google Scholar
  34. [34].
    Q. Grimal, S. Haupert, D. Mitton, L. Vastel, and P. Laugier, “Assessment of cortical bone elasticity and strength: mechanical testing and ultrasound provide complementary data,” Med Eng Phys 31(9), 1140–1147 (2009).CrossRefPubMedGoogle Scholar
  35. [35].
    R. S. Lakes, H. S. Yoon, and J. L. Katz, “Ultrasonic wave propagation and attenuation in wet bone,” J Biomed Eng 8, 143–148 (1986).CrossRefPubMedGoogle Scholar
  36. [36].
    S. Lees and D. Z. Klopholz, “Sonic velocity and attenuation in wet compact cow femur for the frequency range 5 to 100 MHz,” Ultrasound Med Biol 18(3), 303–308 (1992).CrossRefPubMedGoogle Scholar
  37. [37].
    H. Theismann and F. Pfander, “Über die Durchlässigkeit des Knochens für Ultraschall,” Strahlentherapie 80, 607–610 (1949).PubMedGoogle Scholar
  38. [38].
    W. Güttner, “Die Energieverteilung im menschlichen Körper bei Ultraschall-Einstrahlung,” Acustica 4, 547–554 (1954).Google Scholar
  39. [39].
    D. Goldman and T. Hueter, “Tabular data of the velocity and absorption of high frequency sound in mammalian tissues,” J Acoust Soc Am 28, 35–37 (1956).CrossRefGoogle Scholar
  40. [40].
    P. Droin, G. Berger, and P. Laugier, “Velocity dispersion of acoustic waves in cancellous bone,” IEEE Trans Ultrason Ferroelec Freq Contr 45(3), 581–592 (1998).CrossRefGoogle Scholar
  41. [41].
    W. A. Verhoef, J. T. M. Cloosterman, and J. M. Thijssen, “Diffraction and velocity dispersion effectson the estimation of ultrasound attenuation and velocity in biological tissues,” IEEE Trans Biomed Eng 32, 521–529 (1985).CrossRefPubMedGoogle Scholar
  42. [42].
    G. S. Kino, Acoustic Waves: Devised Imaging and Analog Signal (Prentice Hall, New Jersey, 1987).Google Scholar
  43. [43].
    J. J. Kaufman, W. Xu, A. E. Chiabrera, and R. S. Siffert, “Diffraction effects on insertion mode estimation of ultrasonic group velocity,” IEEE Trans Ultrason Ferroelect Freq Contr 42, 232–242 (1995).CrossRefGoogle Scholar
  44. [44].
    W. Xu and K. J, “Diffraction methods for insertion ultrasound attenuation estimation,” IEEE trans Biomed Eng 40(6), 563 (1993).Google Scholar
  45. [45].
    G. Haiat, F. Padilla, R. Barkmann, S. Dencks, U. Moser, C. C. Gluer, and P. Laugier, “Optimal prediction of bone mineral density with ultrasonic measurements in excised human femur,” Calcif Tissue Int 77(3), 186–192. Epub 2005 Sep 2015 (2005).Google Scholar
  46. [46].
    G. Haïat, F. Padilla, R. Cleveland, and P. Laugier, “Effect of frequency dependent attenuation and dispersion on different speed of sound measurements on human intact femur,” IEEE Trans Ultrason Ferroelectr Freq Control 53(1), 39–51 (2006).CrossRefPubMedGoogle Scholar
  47. [47].
    S. Han, J. Rho, J. Medige, and I. Ziv, “Ultrasound velocity and broadband attenuation over a wide range of bone mineral density,” Osteoporos Int 6(4), 291–296 (1996).CrossRefPubMedGoogle Scholar
  48. [48].
    S. Lees, P. F. Cleary, J. D. Heeley, and E. L. Gariepy, “Distribution of sonic plesio-velocity in a compact bone sample,” J Acoust Soc Am 66(3), 641–646 (1979).CrossRefGoogle Scholar
  49. [49].
    C. M. Langton, A. V. Ali, C. M. Riggs, G. P. Evans, and W. Bonfield, “A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone,” Clin Phys Physiol Meas 11, 243–249 (1990).CrossRefPubMedGoogle Scholar
  50. [50].
    C. F. Njeh, D. Hans, T. Fuerst, C.-C. Glüer, and H. K. Genant, “Ultrasonic studies of cortical bone in vitro,” in Quantitative Ultrasound Assessment of Osteoporosis and Bone Status (Martin Dunitz, London, 1999), p. 177.Google Scholar
  51. [51].
    W. Abendschein and G. W. hyatt, “Ultrasonic and selected physical properties of bone,” Clin Orthop Relat Res 69, 294–301 (1970).Google Scholar
  52. [52].
    W. Bonfield and A. Tulley, “Ultrasonic analysis of the Young’s modulus of cortical bone,” J Biomed Eng 4, 23–27 (1982).CrossRefPubMedGoogle Scholar
  53. [53].
    Y. Yamato, H. Kataoka, M. Matsukawa, K. Yamazaki, T. Otani, and A. Nagano, “Distribution of longitudinal wave velocities in bovine cortical bone in vitro.,” Jpn J Appl Phys 44(6B), 4622–4624 (2005).Google Scholar
  54. [54].
    C. Hellmich, J. Barthelemy, and L. Dormieux, “Mineral–collagen interactions in elasticity of bone ultrastructure – a continuum micromechanics approach,” Eur J Mech A Solids 23, 783–810 (2004).CrossRefGoogle Scholar
  55. [55].
    C. Hellmich and F. J. Ulm, “Micromechanical model for ultrastructural stiffness of mineralized tissues,” J Eng Mech 128(8), 898–908 (2002).CrossRefGoogle Scholar
  56. [56].
    Y. Yamato, M. Matsukawa, H. Mizukawa, T. Yanagitani, K. Yamazaki, and A. Nagano, “Distribution of hydroxyapatite crystallite orientation and ultrasonic wave velocity in ring-shaped cortical bone of bovine femur,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1298–1303 (2008).CrossRefPubMedGoogle Scholar
  57. [57].
    Y. Yaoi, K. Yamamoto, Y. Yamato, T. Yanagiteani, M. Matsukawa, K. Yamazaki, and A. Nagano, “Distribution of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone,” Acoust Sci Tech 30(4), 306–309 (2009).CrossRefGoogle Scholar
  58. [58].
    Y. Yamato, M. Matsukawa, T. Yanagitani, K. Yamazaki, H. Mizukawa, and A. Nagano, “Correlation between hydroxyapatite crystallite orientation and ultrasonic wave velocities in bovine cortical bone,” Calcif Tissue Int 82(2), 162–169 (2008).CrossRefPubMedGoogle Scholar
  59. [59].
    Y. Yaoi, K. Yamamoto, T. Nakatsuji, T. Yanagitani, M. Matsukawa, K. Yamazaki, and A. Nagano, “Anisotropy of longitudinal wave velocity an hydroxyapatite orientation in bovine cortical bone,” Jpn J Appl Phys 48(4), 07GK06 (2009).Google Scholar
  60. [60].
    Y. Yamato, H. Kataoka, M. Matsukawa, K. Yamazaki, T. Otani, and A. Nagano, “Distribution of longitudinal wave velocities in bovine cortical bone in vitro,” Jpn J Appl Phys 44(6B), 4622–4624 (2005).Google Scholar
  61. [61].
    L. Serpe and J. Y. Rho, “The nonlinear transition period of broadband ultrasonic attenuation as bone density varies,” J Biomech 29, 963–966 (1996).CrossRefPubMedGoogle Scholar
  62. [62].
    J. Vilks, G. O. Pfafrod, K. A. Yanson, and Y. Z. Saulgozis, “An experimental study of the effect of fracture and operative intervention on acoustical properties of human tibial bone,” Mech Compos Mater 10, 771–778 (1977).Google Scholar
  63. [63].
    J. Saulgozis, I. Pontaga, G. Lowet, and G. Van der Perre, “The effect of fracture and fracture fixation on ultrasonic velocity and attenuation,” Physiol Meas 17, 201–211 (1996).CrossRefPubMedGoogle Scholar
  64. [64].
    S. F. Lipson and J. L. Katz, “The relationship between elastic properties and microstructure of bovine cortical bone,” J Biomech 17(4), 231–240 (1984).CrossRefPubMedGoogle Scholar
  65. [65].
    G. Haïat, F. Padilla, R. Barkmann, C. C. Gluer, and P. Laugier, “Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants,” Ultrasonics 44(1), e289–294 (2006).CrossRefPubMedGoogle Scholar
  66. [66].
    F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. D. Laredo, and P. Laugier, “In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density,” J Acoust Soc Am 119(1), 654–663 (2006).CrossRefPubMedGoogle Scholar
  67. [67].
    G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, “Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation,” J Bone Miner Res 22(5), 665–674 (2007).CrossRefPubMedGoogle Scholar
  68. [68].
    S. Han, J. Rho, J. Medige, and I. Ziv, “Ultrasound velocity and broadband attenuation over a wide range of bone mineral density,” Osteoporosis Int 6(4), 291–296 (1996).CrossRefGoogle Scholar
  69. [69].
    C. F. Njeh, C. M. Boivin, and C. M. Langton, “The role of ultrasound in the assessment of osteoporosis: a review,” Osteoporosis Int 7, 7–22 (1997).CrossRefGoogle Scholar
  70. [70].
    J. A. Evans and M. B. Tavakoli, “Ultrasonic attenuation and velocity in bone,” Phys Med Biol 35(10), 1387–1396 (1990).CrossRefPubMedGoogle Scholar
  71. [71].
    N. Sasaki, Y. Nakayama, M. Yoshikawa, and A. Enyo, “Stress relaxation function of bone and bone collagen,” J Biomech 26(12), 1369–1376 (1993).CrossRefPubMedGoogle Scholar
  72. [72].
    T. Iyo, Y. Maki, N. Sasaki, and M. Nakata, “Anisotropic viscoelastic properties of cortical bone,” J Biomech 37(9), 1433–1437 (2004).CrossRefPubMedGoogle Scholar
  73. [73].
    T. Iyo, N. Sasaki, Y. Maki, and M. Nakata, “Mathematical description of stress relaxation of bovine femoral cortical bone,” Biorheology 43(2), 117–132 (2006).PubMedGoogle Scholar
  74. [74].
    R. S. Lakes and J. L. Katz, “Viscoelastic properties of wet cortical bone – II. Relaxation mechanisms,” J Biomech 12, 679–687 (1979).Google Scholar
  75. [75].
    R. S. Lakes and S. Saha, “Cement line motion in bone,” Science 204, 501–505 (1979).CrossRefPubMedGoogle Scholar
  76. [76].
    K. A. Wear, “The effects of frequency-dependant attenuation and dispersion on sound speed measurements: applications in human trabecular bone,” IEEE Trans Ultrason Ferroelect Freq Contr 47(1), 265–273 (2000).CrossRefGoogle Scholar
  77. [77].
    K. A. Wear, “A numerical method to predict the effects of frequency-dependent attenuation and dispersion on speed of sound estimates in cancellous bone,” J Acoust Soc Am 109(3), 1213–1218 (2001).CrossRefPubMedGoogle Scholar
  78. [78].
    K. A. Wear, “The dependence of time-domain speed-of-sound measurements on center frequency, bandwidth, and transit-time marker in human calcaneus in vitro,” J Acoust Soc Am 122(1), 636–644 (2007).CrossRefPubMedGoogle Scholar
  79. [79].
    E. Bossy, M. Talmant, F. Peyrin, L. Akrout, P. Cloetens, and P. Laugier, “An in vitro study of the ultrasonic axial transmission technique at the radius: 1-MHz velocity measurements are sensitive to both mineralization and intracortical porosity.,” J Bone Miner Res 19(9), 1548–1556 (2004).CrossRefPubMedGoogle Scholar
  80. [80].
    P. Moilanen, “Ultrasonic guided waves in bone,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1277–1286 (2008).CrossRefPubMedGoogle Scholar
  81. [81].
    F. Lefebvre, Y. Deblock, P. Campistron, D. Ahite, and J. J. Fabre, “Development of a new ultrasonic technique for bone and biomaterials in vitro characterization,” J Biomed Mater Res 63(4), 441–446 (2002).CrossRefPubMedGoogle Scholar
  82. [82].
    V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound Med Biol 32(5), 693–708 (2006).CrossRefPubMedGoogle Scholar
  83. [83].
    P. H. F. Nicholson, G. Lowet, C. M. Langton, J. Dequeker, and G. Van der Perre, “A comparison of time-domain and frequency domain approaches to ultrasonic velocity measurement in trabecular bone,” Phys Med Biol 41, 2421–2435 (1996).CrossRefPubMedGoogle Scholar
  84. [84].
    R. Strelitzki and J. A. Evans, “On the measurement of the velocity of ultrasound in the os calcis using short pulses,” Eur J Ultrasound 4, 205–213 (1996).CrossRefGoogle Scholar
  85. [85].
    K. Wear, “Measurements of phase velocity and group velocity in human calcaneus,” Ultrasound Med Biol 26(4), 641–646 (2000).CrossRefPubMedGoogle Scholar
  86. [86].
    K. A. Wear, “A stratified model to predict dispersion in trabecular bone,” IEEE Trans Ultrason Ferroelect Freq Control 48(4), 1079–1083 (2001).CrossRefGoogle Scholar
  87. [87].
    K. A. Wear, “Group velocity, phase velocity, and dispersion in human calcaneus in vivo,” J Acoust Soc Am 121(4), 2431–2437 (2007).CrossRefPubMedGoogle Scholar
  88. [88].
    H. S. Yoon and J. L. Katz, “Ultrasonic wave propagation inhuman cortical bone-II. Measurements of elastic properties and microhardness,” J Biomech 9, 459–464 (1976).Google Scholar
  89. [89].
    G. Haiat, M. Sasso, S. Naili, and M. Matsukawa, “Ultrasonic velocity dispersion in bovine cortical bone: an experimental study,” J Acoust Soc Am 124(3), 1811–1821 (2008).CrossRefPubMedGoogle Scholar
  90. [90].
    K. R. Marutyan, G. L. Bretthorst, and J. G. Miller, “Bayesian estimation of the underlying bone properties from mixed fast and slow mode ultrasonic signals,” J Acoust Soc Am 121(1), EL8–15 (2007).Google Scholar
  91. [91].
    M. Locke, “Structure of long bones in mammals,” J Morphol 262(2), 546–565 (2004).CrossRefPubMedGoogle Scholar
  92. [92].
    M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range,” J Acoust Soc Am 28(2), 168–178 (1956).CrossRefGoogle Scholar
  93. [93].
    M. A. Biot, “Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range,” J Acoust Soc Am 28(2), 179–191 (1956).CrossRefGoogle Scholar
  94. [94].
    G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” J Acoust Soc Am 124(6), 4047–4058 (2008).CrossRefPubMedGoogle Scholar
  95. [95].
    G. Haïat, F. Padilla, P. Laugier, S. Lonné, and S. Naili, “Modeling the frequency dependence of phase velocity in phantoms of trabecular bone,” presented at the International congress on ultrasonics, Vienna, Austria, 2007.Google Scholar
  96. [96].
    T. Koizumi, K. Yamamoto, T. Nakatsuji, and M. Matsukawa, “Dispersion of Longitudinal Wave Velocity in Swine Cortical Bone,” presented at the 2009 IEEE International Ultrasonics Symposium, Roma, Italy, 2009.Google Scholar
  97. [97].
    M. O’Donnell, E. T. Jaynes, and J. G. Miller, “General relationships between ultrasonic attenuation and dispersion,” J Acoust Soc Am 63(6) (1978).Google Scholar
  98. [98].
    M. O’Donnell, E. T. Jaynes, and J. G. Miller, “Kramers-Kronig relationship between ultrasonic attenuation and phase velocity,” J Acoust Soc Am 69(3), 696–701 (1981).CrossRefGoogle Scholar
  99. [99].
    K. R. Waters, M. S. Hughes, G. H. Brandeburger, and J. G. Miller, “On the applicability of Kramers-Krönig relations for ultrasonic attenuation obeying a frequency power law,” J Acoust Soc Am 108(2), 556–563 (2000).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.CNRS, B2OA UMR 7052ParisFrance

Personalised recommendations