Bone Overview

  • David MittonEmail author
  • Christian Roux
  • Pascal Laugier


This chapter is intended for readers who do not have a background in bone biomechanics. It gives a description of bone, highlighting its complex and hierarchical structure, starting at the macroscopic scale from an entire bone, such as the femur, down to the nanoscopic scale and its basic components: the collagen fibers and the mineral crystals. Then, some definitions and concepts of biomechanics are given in relation to the hierarchical structure of bone. The goal is to define the main parameters that can be used to assess bone mechanical competence. Some mechanical features are accessible using the quantitative ultrasound (QUS) technologies that are presented in subsequent chapters. Finally, the clinical context in which QUS has been developed is described. Diagnosis and follow-up of osteoporosis is a major public health problem in which QUS can play a role.


Anisotropy Biomechanics Bone mineral density Bulk modulus Canaliculi Cancellousbone Collagen fibers Cortical bone Damage Densitometry Density Diagnosis Elasticcoefficient Elasticity Failure load Fatigue Fracture risk Haversiancanal Isotropy Lamellae Microarchitecture Microcracks Crystals Multi-scale Osteoblasts Osteoclasts Osteocytes Osteon Osteoporosis Poisson’s coefficient Porosity Rigidity Shear modulus Strain Strength Stress Toughness Trabeculae Viscoelasticity Young’s modulus 



The authors would like to acknowledge Catherine Verdu (INSA Lyon) who performed the scanning electron microscopy images.


  1. 1.
    T. F. Lang, “What do we know about fracture risk in long-duration spaceflight?,” J Musculoskelet Neuronal Interact 6(4), 319–321 (2006).PubMedGoogle Scholar
  2. 2.
    A. LeBlanc, V. Schneider, L. Shackelford, S. West, V. Oganov, A. Bakulin, and L. Voronin, “Bone mineral and lean tissue loss after long duration space flight,” J Musculoskelet Neuronal Interact 1(2), 157–160 (2000).PubMedGoogle Scholar
  3. 3.
    R. E. Guldberg, N. J. Caldwell, X. E. Guo, R. W. Goulet, S. J. Hollister, and S. A. Goldstein, “Mechanical stimulation of tissue repair in the hydraulic bone chamber,” J Bone Miner Res 12(8), 1295–1302 (1997).CrossRefPubMedGoogle Scholar
  4. 4.
    R. Huiskes, “The law of adaptative bone remodeling: a case for crying newton?,” in Recent advances in human biology-Bone structure and remodeling, A. Odgaard and H. Weinans, eds. (World Scientific, Singapore-New Jersey-London-Hong Kong 1995), pp. 137–145.Google Scholar
  5. 5.
    P. Augat and S. Schorlemmer, “The role of cortical bone and its microstructure in bone strength,” Age Ageing 35 (Suppl 2), ii27–ii31 (2006).Google Scholar
  6. 6.
    J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys 20(2), 92–102 (1998).CrossRefPubMedGoogle Scholar
  7. 7.
    M. M. Giraud-Guille, “Twisted plywood architecture of collagen fibrils in human compact bone osteons,” Calcif Tissue Int 42(3), 167–180 (1988).CrossRefPubMedGoogle Scholar
  8. 8.
    S. Cowin, ed., Bone mechanics handbook (CRC Press, Boca Raton, FL, 2001).Google Scholar
  9. 9.
    D. B. Burr and R. B. Martin, “Errors in bone remodeling: toward a unified theory of metabolic bone disease,” Am J Anat 186(2), 186–216 (1989).CrossRefPubMedGoogle Scholar
  10. 10.
    E. Seeman, “Bone modeling and remodeling,” Crit Rev Eukaryot Gene Expr 19(3), 219–233 (2009).PubMedGoogle Scholar
  11. 11.
    M. L. Bouxsein, A. C. Courtney, and W. C. Haynes, “Ultrasound and densitometry of the calcaneus correlates with the failure load of cadaveric femurs,” Calcif Tissue Int 56, 99–103 (1995).CrossRefPubMedGoogle Scholar
  12. 12.
    A. Le Bras, S. Kolta, P. Soubrane, W. Skalli, C. Roux, and D. Mitton, “Assessment of femoral neck strength by 3-dimensional X-ray absorptiometry,” J Clin Densitom 9(4), 425–430 (2006).CrossRefPubMedGoogle Scholar
  13. 13.
    M. D. Smith, D. D. Cody, S. A. Goldstein, A. M. Cooperman, L. S. Matthews, and M. J. Flynn, “Proximal femoral bone density and its correlation to fracture load and hip-screw penetration load,” Clin Orthop Relat Res 283, 244–251 (1992).PubMedGoogle Scholar
  14. 14.
    L. Duchemin, W. Skalli, V. Topouchian, M. Benissa, and D. Mitton, “Femoral fracture load and failure energy in two loading configurations: an in vitro study,” presented at the European Orthopaedic Research Society, Bologna, 2006.Google Scholar
  15. 15.
    P. H. Nicholson, G. Lowet, X. G. Cheng, S. Boonen, G. van der Perre, and J. Dequeker, “Assessment of the strength of the proximal femur in vitro: relationship with ultrasonic measurements of the calcaneus,” Bone 20(3), 219–224 (1997).CrossRefPubMedGoogle Scholar
  16. 16.
    M. A. Haidekker, R. Andresen, and H. J. Werner, “Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests,” Osteoporos Int 9(5), 433–440 (1999).CrossRefPubMedGoogle Scholar
  17. 17.
    E. Sapin, F. Chan, C. Ayoub, C. Roux, W. Skalli, and D. Mitton, “Anterior bending on whole vertebrae using controlled boundary conditions for model validation,” J Musculoskelet Res 12(2), 71–76 (2009).CrossRefGoogle Scholar
  18. 18.
    J. M. Buckley, L. Cheng, K. Loo, C. Slyfield, and Z. Xu, “Quantitative computed tomography-based predictions of vertebral strength in anterior bending,” Spine (Phila Pa 1976) 32(9), 1019–1027 (2007).Google Scholar
  19. 19.
    M. R. Bosisio, M. Talmant, W. Skalli, P. Laugier, and D. Mitton, “Apparent Young’s modulus of human radius using inverse finite-element method,” J Biomech 40(9), 2022–2028 (2007).CrossRefPubMedGoogle Scholar
  20. 20.
    R. J. S. Brown, “Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid filled with porous media,” Geophysics 45, 1269–1275 (1980).CrossRefGoogle Scholar
  21. 21.
    J. Lemaitre and J. L. Chaboche, Mécanique des matériaux solides (Dunod, Paris, 2004).Google Scholar
  22. 22.
    X. Wang and S. Puram, “The toughness of cortical bone and its relationship with age,” Ann Biomed Eng 32(1), 123–135 (2004).CrossRefPubMedGoogle Scholar
  23. 23.
    L. Duchemin, V. Bousson, C. Raossanaly, C. Bergot, J. D. Laredo, W. Skalli, and D. Mitton, “Prediction of mechanical properties of cortical bone by quantitative computed tomography,” Med Eng Phys 30(3), 321–328 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    D. Mitton, J. Rappeneau, and R. Bardonnet, “Effect of a supercritical CO2 based treatment on mechanical properties of human cancellous bone,” Eur J Orthop Surg Traumatol 15(4), 264–269 (2005).CrossRefGoogle Scholar
  25. 25.
    R. B. Ashman, S. C. Cowin, W. C. Van Buskirk, and J. C. Rice, “A continuous wave technique for the measurement of the elastic properties of cortical bone,” J Biomech 17, 349–361 (1984).CrossRefPubMedGoogle Scholar
  26. 26.
    E. Verhulp, B. van Rietbergen, and R. Huiskes, “Comparison of micro-level and continuum-level voxel models of the proximal femur,” J Biomech 39(16), 2951–2957 (2006).CrossRefPubMedGoogle Scholar
  27. 27.
    K. Bruyere Garnier, R. Dumas, C. Rumelhart, and M. E. Arlot, “Mechanical characterization in shear of human femoral cancellous bone: torsion and shear tests,” Med Eng Phys 21(9), 641–649 (1999).CrossRefPubMedGoogle Scholar
  28. 28.
    R. K. Nalla, J. J. Kruzic, and R. O. Ritchie, “On the origin of the toughness of mineralized tissue: microcracking or crack bridging?,” Bone 34(5), 790–798 (2004).CrossRefPubMedGoogle Scholar
  29. 29.
    R. B. Cook and P. Zioupos, “The fracture toughness of cancellous bone,” J Biomech 42(13), 2054–2060 (2009).CrossRefPubMedGoogle Scholar
  30. 30.
    C. H. Turner and D. B. Burr, “Basic biomechanical measurements of bone: a tutorial,” Bone 14(4), 595–608 (1993).CrossRefPubMedGoogle Scholar
  31. 31.
    B. van Rietbergen, H. Weinans, R. Huiskes, and A. Odgaard, “A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models,” J Biomech 28(1), 69–81 (1995).CrossRefPubMedGoogle Scholar
  32. 32.
    A. J. Ladd, J. H. Kinney, D. L. Haupt, and S. A. Goldstein, “Finite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus,” J Orthop Res 16(5), 622–628 (1998).CrossRefPubMedGoogle Scholar
  33. 33.
    H. Follet, F. Peyrin, E. Vidal-Salle, A. Bonnassie, C. Rumelhart, and P. J. Meunier, “Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography,” J Biomech 40(10), 2174–2183 (2007).CrossRefPubMedGoogle Scholar
  34. 34.
    J. Y. Rho, T. Y. Tsui, and G. M. Pharr, “Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation,” Biomaterials. 18(20), 1325–1330. (1997).Google Scholar
  35. 35.
    H. S. Gupta, U. Stachewicz, W. Wagermaier, P. Roschger, H. D. Wagner, and P. Fratzl, “Mechanical modulation at the lamellar level in osteonal bone,” J Mater Res 21(8), 1913–1921 (2006).CrossRefGoogle Scholar
  36. 36.
    J. Y. Rho, R. B. Ashman, and C. H. Turner, “Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements,” J Biomech 26(2), 111–119 (1993).CrossRefPubMedGoogle Scholar
  37. 37.
    J. L. Kuhn, S. A. Goldstein, K. Choi, M. London, L. A. Feldkamp, and L. S. Matthews, “Comparison of the trabecular and cortical tissue moduli from human iliac crests,” J Orthop Res 7(6), 876–884 (1989).CrossRefPubMedGoogle Scholar
  38. 38.
    K. Choi, J. L. Kuhn, M. J. Ciarelli, and S. A. Goldstein, “The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus,” J Biomech 23(11), 1103–1113 (1990).CrossRefPubMedGoogle Scholar
  39. 39.
    F. J. Hou, S. M. Lang, S. J. Hoshaw, D. A. Reimann, and D. P. Fyhrie, “Human vertebral body apparent and hard tissue stiffness,” J Biomech 31(11), 1009–1015 (1998).CrossRefPubMedGoogle Scholar
  40. 40.
    C. H. Turner, J. Rho, Y. Takano, T. Y. Tsui, and G. M. Pharr, “The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques,” J Biomech. 32(4), 437–441 (1999).CrossRefPubMedGoogle Scholar
  41. 41.
    P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, “Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur,” J Biomech 32(10), 1005–1012 (1999).CrossRefPubMedGoogle Scholar
  42. 42.
    S. A. Goldstein, D. L. Wilson, D. A. Sonstegard, and L. S. Matthews, “The mechanical properties of human tibial trabecular bone as a function of metaphyseal location,” J Biomech 16(12), 965–969 (1983).CrossRefPubMedGoogle Scholar
  43. 43.
    J. D. Currey, “What determines the bending strength of compact bone?,” J Exp Biol 202(Pt 18), 2495–2503 (1999).PubMedGoogle Scholar
  44. 44.
    R. W. McCalden, J. A. McGeough, M. B. Barker, and C. M. Court-Brown, “Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure,” J Bone Joint Surg Am 75(8), 1193–1205 (1993).PubMedGoogle Scholar
  45. 45.
    R. W. McCalden, J. A. McGeough, and C. M. Court-Brown, “Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture,” J Bone Joint Surg Am 79(3), 421–427 (1997).PubMedGoogle Scholar
  46. 46.
    T. Diab, K. W. Condon, D. B. Burr, and D. Vashishth, “Age-related change in the damage morphology of human cortical bone and its role in bone fragility,” Bone 38(3), 427–431 (2006).CrossRefPubMedGoogle Scholar
  47. 47.
    C. E. Hoffler, K. E. Moore, K. Kozloff, P. K. Zysset, and S. A. Goldstein, “Age, gender, and bone lamellae elastic moduli,” J Orthop Res 18(3), 432–437 (2000).CrossRefPubMedGoogle Scholar
  48. 48.
    J. S. Nyman, A. Roy, J. H. Tyler, R. L. Acuna, H. J. Gayle, and X. Wang, “Age-related factors affecting the postyield energy dissipation of human cortical bone,” J Orthop Res 25(5), 646–655 (2007).CrossRefPubMedGoogle Scholar
  49. 49.
    D. Mitton, “Cortical bone composition and biomechanical implications,” Osteoporo Int 19, 853–855 (2008).CrossRefGoogle Scholar
  50. 50.
    W. Kalender, K. Engelke, T. P. Fuerst, C.-C. Glüer, P. Laugier, and J. Shepherd, “Quantitative aspects of bone densitometry (ICRU Report 81),” J ICRU 9(1), 1–130 (2009).Google Scholar
  51. 51.
    A. Le Bras, S. Laporte, V. Bousson, D. Mitton, J. A. De Guise, J. D. Laredo, and W. Skalli, “3D reconstruction of the proximal femur with low-dose digital stereoradiography,” Comput Aided Surg 9(3), 51–57 (2004).CrossRefPubMedGoogle Scholar
  52. 52.
    G. Haiat, F. Padilla, R. Barkmann, S. Kolta, C. Latremouille, C. C. Glüer, and P. Laugier, “In vitro speed of sound measurement at intact human femur specimens,” Ultrasound Med Biol 31(7), 987–996 (2005).CrossRefPubMedGoogle Scholar
  53. 53.
    F. Jenson, F. Padilla, V. Bousson, C. Bergot, J. D. Laredo, and P. Laugier, “In vitro ultrasonic characterization of human cancellous femoral bone using transmission and backscatter measurements: relationships to bone mineral density,” J Acoust Soc Am 119(1), 654–663 (2006).CrossRefPubMedGoogle Scholar
  54. 54.
    G. Boivin, Y. Bala, A. Doublier, D. Farlay, L. G. Ste-Marie, P. J. Meunier, and P. D. Delmas, “The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients,” Bone 43(3), 532–538 (2008).CrossRefPubMedGoogle Scholar
  55. 55.
    A. M. Parfitt, M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, S. M. Ott, and R. R. Recker, “Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee,” J Bone Miner Res 2(6), 595–610 (1987).CrossRefPubMedGoogle Scholar
  56. 56.
    J. L. Kuhn, S. A. Goldstein, L. A. Feldkamp, R. W. Goulet, and G. Jesion, “Evaluation of a microcomputed tomography system to study trabecular bone structure,” J Orthop Res 8(6), 833–842 (1990).CrossRefPubMedGoogle Scholar
  57. 57.
    P. Ruegsegger, B. Koller, and R. Muller, “A microtomographic system for the nondestructive evaluation of bone architecture,” Calcif Tissue Int 58(1), 24–29 (1996).CrossRefPubMedGoogle Scholar
  58. 58.
    A. Laib, H. J. Hauselmann, and P. Ruegsegger, “In vivo high resolution 3D-QCT of the human forearm,” Technol Health Care 6(5–6), 329–337 (1998).PubMedGoogle Scholar
  59. 59.
    S. Boutroy, M. L. Bouxsein, F. Munoz, and P. D. Delmas, “In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography,” J Clin Endocrinol Metab 90(12), 6508–6515. Epub 2005 Sep 6527 (2005).Google Scholar
  60. 60.
    S. Majumdar and H. K. Genant, “A review of the recent advances in magnetic resonance imaging in the assessment of osteoporosis,” Osteoporos Int 5(2), 79–92 (1995).CrossRefPubMedGoogle Scholar
  61. 61.
    H. W. Chung, F. W. Wehrli, J. L. Williams, S. D. Kugelmass, and S. L. Wehrli, “Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging,” J Bone Miner Res 10(5), 803–811 (1995).CrossRefPubMedGoogle Scholar
  62. 62.
    L. Pothuaud, C. L. Benhamou, P. Porion, E. Lespessailles, R. Harba, and P. Levitz, “Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture,” J Bone Miner Res 15(4), 691–699 (2000).CrossRefPubMedGoogle Scholar
  63. 63.
    D. B. Burr and M. Hooser, “Alterations to the en bloc basic fuchsin staining protocol for the demonstration of microdamage produced in vivo,” Bone 17(4), 431–433 (1995).CrossRefPubMedGoogle Scholar
  64. 64.
    R. D. Chapurlat, P. Garnero, G. Breart, P. J. Meunier, and P. D. Delmas, “Serum type I collagen breakdown product (serum CTX) predicts hip fracture risk in elderly women: the EPIDOS study,” Bone 27(2), 283–286 (2000).CrossRefPubMedGoogle Scholar
  65. 65.
    A. Larrue, A. Rattner, N. Laroche, L. Vico, and F. Peyrin, “Feasibility of micro-crack detection in human trabecular bone images from 3D synchrotron microtomography,” Conf Proc IEEE Eng Med Biol Soc 2007, 3918–3921 (2007).PubMedGoogle Scholar
  66. 66.
    G. Haïat, F. Padilla, M. Svrcekova, Y. Chevalier, D. Pahr, F. Peyrin, P. Laugier, and P. Zysset, “Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach,” J Biomech 42(13), 2033–2039 (2009).CrossRefPubMedGoogle Scholar
  67. 67.
    C. J. Hernandez and T. M. Keaveny, “A biomechanical perspective on bone quality,” Bone 39(6), 1173–1181 (2006).CrossRefPubMedGoogle Scholar
  68. 68.
    IOF, “Osteoporosis in the Workplace: the social, economic and human costs of osteoporosis on employees, employers and governments” (2002).Google Scholar
  69. 69.
    L. J. Melton, III, E. A. Chrischilles, C. Cooper, A. W. Lane, and B. L. Riggs, “Perspective. How many women have osteoporosis?,” J Bone Miner Res 7(9), 1005–1010 (1992).CrossRefPubMedGoogle Scholar
  70. 70.
    A. Randell, P. N. Sambrook, T. V. Nguyen, H. Lapsley, G. Jones, P. J. Kelly, and J. A. Eisman, “Direct clinical and welfare costs of osteoporotic fractures in elderly men and women,” Osteoporos Int 5(6), 427–432 (1995).CrossRefPubMedGoogle Scholar
  71. 71.
    S. R. Cummings, D. B. Karpf, F. Harris, H. K. Genant, K. Ensrud, A. Z. LaCroix, and D. M. Black, “Improvement in spine bone density and reduction in risk of vertebral fractures during treatment with antiresorptive drugs,” Am J Med 112(4), 281–289 (2002).CrossRefPubMedGoogle Scholar
  72. 72.
    O. Johnell, J. A. Kanis, A. Oden, I. Sernbo, I. Redlund-Johnell, C. Petterson, C. De Laet, and B. Jonsson, “Mortality after osteoporotic fractures,” Osteoporos Int 15(1), 38–42 (2004).CrossRefPubMedGoogle Scholar
  73. 73.
    B. Gullberg, O. Johnell, and J. A. Kanis, “World-wide projections for hip fracture,” Osteoporos Int 7(5), 407–413 (1997).CrossRefPubMedGoogle Scholar
  74. 74.
    C. C. Gluer, S. R. Cummings, D. C. Bauer, K. Stone, A. Pressman, A. Mathur, and H. K. Genant, “Osteoporosis: association of recent fractures with quantitative US findings,” Radiology 199(3), 725–732 (1996).PubMedGoogle Scholar
  75. 75.
    WHO, “Assessment of osteoporotic fracture risk and its application to screening for post-menopausal osteoporosis,” (World Health Organization, Geneva, 1994).Google Scholar
  76. 76.
    S. C. Schuit, M. van der Klift, A. E. Weel, C. E. de Laet, H. Burger, E. Seeman, A. Hofman, A. G. Uitterlinden, J. P. van Leeuwen, and H. A. Pols, “Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study,” Bone 34(1), 195–202 (2004).CrossRefPubMedGoogle Scholar
  77. 77.
    J. A. Kanis, N. Burlet, C. Cooper, P. D. Delmas, J. Y. Reginster, F. Borgstrom, and R. Rizzoli, “European guidance for the diagnosis and management of osteoporosis in postmenopausal women,” Osteoporos Int 19(4), 399–428 (2008).CrossRefPubMedGoogle Scholar
  78. 78.
    P. J. Meunier, C. Roux, S. Ortolani, M. Diaz-Curiel, J. Compston, P. Marquis, C. Cormier, G. Isaia, J. Badurski, J. D. Wark, J. Collette, and J. Y. Reginster, “Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis,” Osteoporos Int 20(10), 1663–1673 (2009).CrossRefPubMedGoogle Scholar
  79. 79.
    P. Laugier, “Instrumentation for in vivo ultrasonic characterization of bone strength,” IEEE Trans Ultrason Ferroelectr Freq Control 55(6), 1179–1196 (2008).CrossRefPubMedGoogle Scholar
  80. 80.
    T. M. Keaveny and M. L. Bouxsein, “Theoretical implications of the biomechanical fracture threshold,” J Bone Miner Res 23(10), 1541–1547 (2008).CrossRefPubMedGoogle Scholar
  81. 81.
    J. H. Keyak, S. A. Rossi, K. A. Jones, and H. B. Skinner, “Prediction of femoral fracture load using automated finite element modeling,” J Biomech 31(2), 125–133 (1998).CrossRefPubMedGoogle Scholar
  82. 82.
    L. Duchemin, D. Mitton, E. Jolivet, V. Bousson, J. D. Laredo, and W. Skalli, “An anatomical subject-specific FE-model for hip fracture load prediction,” Comput Methods Biomech Biomed Engin 11(2), 105–111 (2008).CrossRefPubMedGoogle Scholar
  83. 83.
    E. Schileo, F. Taddei, L. Cristofolini, and M. Viceconti, “Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro,” J Biomech 41(2), 356–367 (2008).CrossRefPubMedGoogle Scholar
  84. 84.
    T. M. Keaveny, P. F. Hoffmann, M. Singh, L. Palermo, J. P. Bilezikian, S. L. Greenspan, and D. M. Black, “Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans,” J Bone Miner Res 23(12), 1974–1982 (2008).CrossRefPubMedGoogle Scholar
  85. 85.
    R. Thiel, K. A. Stroetmann, V. N. Stroetmann, and M. Viceconti, “Designing a socio-economic assessment method for integrative biomedical research: the Osteoporotic Virtual Physiological Human project,” Stud Health Technol Inform 150, 876–880 (2009).PubMedGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  1. 1.Université Lyon 1LyonFrance
  2. 2.INRETS, UMR_T9406, LBMCBron CedexFrance
  3. 3.Faculté de Médecine, Hopital CochinUniversité Paris-DescartesParisFrance
  4. 4.Laboratoire d’Imagerie ParametriqueUniversité Pierre et Marie Curie, CNRSParisFrance

Personalised recommendations