Dynamic Radiography Imaging as a Tool in the Design and Validation of a Novel Intelligent Amputee Socket

  • George Papaioannou
  • Dimitris Tsiokos
  • Goeran Fiedler
  • Christos Mitrogiannis
  • Ilya Avdeev
  • Jake Wood
  • Ray McKinney
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)


It is apparent that socket fit is the most common source of dissatisfaction in amputees and part of a growing medical and socioeconomic problem. Even the most up to date trans-tibial socket designs are not capable of coping with the issue of continuous stump volume change that is apparent within a day, week, month or season of socket use. Intelligent sockets integrating variable volume (VVSS) with elevated vacuum (EV) systems hold that promise but have yet to reach completion in feasibility studies. This is mainly due to delays in the relevant technological maturity, cost and poor assessment methodologies. These challenges can be overcome by current advantages in dynamic radiography imaging. These advantages are presented with an example of a novel socket design as: a) solutions to problems of direct socket-stump motion measurement, and b) as tools for calibrating socket control hardware and computer aided socket design. Imaging can therefore be integrated as part of an expert clinical system for imaging-driven computer-aided socket design and evaluation (cost-labor effective).


Intelligent transtibial socket Elevated vacuum Variable volume Dynamic radiography CAD-CAE 



U.S. ARMY MEDICAL RESEARCH & MATERIEL COMMAND, “MOVE” CENTER Award: # 07-2-01; European Commission EC FP7: IASiS, contract #: 232479; and SMARTsocket: FP7-PEOPLE- 2009-IAPP.


  1. 1.
    Arndt, B.: Case study: use of a partial foot prosthesis under elevated vacuum. The American Academy of Orthotists and Prosthetists. 36th Annual Meeting and Scientific Symposium Chicago, IL, USA, 24–27 Feb2010Google Scholar
  2. 2.
    Avril, S., Bouten, L., Dubuis, L., etal.: Mixed experimental and numerical approach for characterizing the biomechanical response of the human leg under elastic compression. J. Biomech. Eng. (2010). doi:132/031006-1Google Scholar
  3. 3.
    Bansal, C., Scott, R., Stewart, D., etal.: Decubitus ulcers: a review of the literature. Int. J. Dermatol. 44, 805–801(2005)CrossRefGoogle Scholar
  4. 4.
    Beil, T.L., Street, G.M.: Comparison of interface pressures with pin and suction suspension systems. J. Rehabilit. Res. Develop.41, 821–828(2004)CrossRefGoogle Scholar
  5. 5.
    Beil, T.L., Street, G.M., Covey, S.J.: Interface pressures during ambulation using suction and vacuum-assisted prosthetic sockets. J. Rehabilit. Res. Develop.39, 693–700(2002)Google Scholar
  6. 6.
    Beillas, P., Papaioannou, G., Yang, K.H., etal.: A new method to investigate in-vivo knee behavior using a finite element model of the lower limb. J. Biomech.37, 1019–1030(2004)CrossRefGoogle Scholar
  7. 7.
    Board, W.J., Street, G.M., Caspers, C.: A comparison of trans-tibial amputee suction and vacuum socket conditions. Prosthet. Orthot. Int. 25, 202–209(2001)CrossRefGoogle Scholar
  8. 8.
    Bocobo, C.R., Castellote, J.M., MacKinnon, D., etal.: Videofluoroscopic evaluation of prosthetic fit and residual limbs following transtibial amputation. J. Rehabil. Res. Dev. 35, 6–13(1998)Google Scholar
  9. 9.
    Brennan, J.M., Childress, D.S. Finite element and experimental investigation of above-knee amputee limb/prosthesis systems: a comparative study. ASME Adv. Bioengi. 20, 547–550 (1991)Google Scholar
  10. 10.
    Brunelli, S., Averna, T., Delusso, S., etal.: Vacuum assisted socket system in trans-tibial amputees: clinical report. Orthopädie-Technik Quart. (English edn) 2, 2–8(2009)Google Scholar
  11. 11.
    Buis, A.W., Covery, P.: (1997) Calibration problems encountered while monitoring stump/socket interface pressures with force sensing resistors: techniques adopted to minimise inaccuracies. Prosthet. Orthot. Int. 21, 179–182(2009)Google Scholar
  12. 12.
    Caspers, C.A.: Vacuum apparatus and method for managing residual limb volume in an artificial limb (2004). Patent No:US 2004/0181290AlGoogle Scholar
  13. 13.
    Commean, P.K., Smith, K.E., Cheverud, J.M., etal.: Precision of surface measurements for below-knee residua. Arch. Phys. Med. Rehabil. 77, 477–486(1996)CrossRefGoogle Scholar
  14. 14.
    Convery, P., Buis, A.W.: Socket/stump interface dynamic pressure distribution recorded during the prosthetic stance phase of gait of a trans-tibial amputee wearing a hydrocast socket. Prosthet. Orthot. Int. 23, 107–112(1999)Google Scholar
  15. 15.
    Convery, P., Murray, K.D.: Ultrasound study of the motion of the residual femur within a trans-femoral socket during gait. Prosthet. Orthot. Int. 24, 226–232(2000)CrossRefGoogle Scholar
  16. 16.
    Cork, R.: XSENSOR technology: a pressure imaging overview. Sens. Rev. 27, 24–28(2007)CrossRefGoogle Scholar
  17. 17.
    Danzig, M., Bush, H., McKinney, R.: A prosthetic vacuum system (2009). Patent No:US 2008/0147202A1Google Scholar
  18. 18.
    Dillingham, T.R., Pezzin, L.E., MacKenzie, E.J.: Limb amputation and limb deficiency: epidemiology and recent trends in the United States. South. Med. J. 95, 875–883(2002)Google Scholar
  19. 19.
    Ephraim, P., Dillingham, T., Sector, M., etal.: Epidemiology of limb loss and congenital limb deficiency: a review of the literature. Arch. Phys. Med. Rehabil. 84, 747–761(2003)Google Scholar
  20. 20.
    Frost, Sullivan: U.S. lower extremity prosthetics markets (2007)Google Scholar
  21. 21.
    Gerschutz, M.J.: Elevated vacuum suspension: outcome measures evaluating patient preferences and vacuum pressure & evaluation of residual limb movement in a prosthetic socket. Am. Acad. Orthot. Prosthet. 36th Annual Meeting and Scientific Symposium Chicago, IL, USA, 24–27 Feb2010Google Scholar
  22. 22.
    Gerschutz, M.J.: Elevated vacuum suspension: the effects on an amputees residual limb volume. Am. Acad. Orthot. Prosthet. 36th Annual Meeting and Scientific Symposium Chicago, IL, USA, 24–27 Feb2010Google Scholar
  23. 23.
    Goswami, J., Lynn, R., Street, G., etal.: Walking in a vacuum-assisted socket shifts the stump fluid balance. Prosthet. Orthot. Int. 27, 107–113(2003)CrossRefGoogle Scholar
  24. 24.
    Greenwald, R.M.: Volume management: smart variable geometry socket (SVGS) technology for lower-limb prostheses. J. Prosthet. Orthort. 15, 107–112(2003)CrossRefGoogle Scholar
  25. 25.
    Kalender, W.A., Seissler, W., Klotz, E., etal.: Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176, 181–183 (1990)Google Scholar
  26. 26.
    Klute, G.K.: Vacuum suspension: fit and function. Am. Acad. Orthot. Prosthet. 36th Annual Meeting and Scientific Symposium Chicago, IL, USA, 24–27 Feb2010Google Scholar
  27. 27.
    Kokegei, D.: Survey of possible socket designs for old age amputated persons. Orthopädie-Technik 9, 625–633(2001)Google Scholar
  28. 28.
    Krohg, N.O.: Apparatus and methods for surface contour measurements (2009). Patent No:6, 270 and 7,242,484Google Scholar
  29. 29.
    Lee, V.S.P., Solomonidis, S.E., Spence, W.D.: Stump–socket interface pressure as an aid to socket design in prostheses for trans-femoral amputees– a preliminary study. Proceedings of the Institution of Mechanical Engineers. Part H. J. Engi. Med. 211, 167–180(1997)CrossRefGoogle Scholar
  30. 30.
    Lilja, M., Johansson, T., Oberg, T.: Movement of the tibial end in a PTB prosthesis socket: a sagittal X-ray study of the PTB prosthesis. Prosthet. Orthot. Int. 17, 21–26(1993)Google Scholar
  31. 31.
    Mitrogiannis, C., Fiedler, G., Papadopoulos, C., etal.: Validation of 3D fluoroscopy image distortion correction and calibration algorithms. 9th International Conference on Information Technology and Applications in Biomedicine Larnaca. Cyprus. Nov. 5–7(2009)Google Scholar
  32. 32.
    Narita, H., Yokogushi, K., Ship, S., etal.: Suspension effect and dynamic evaluation of the total surface bearing (TSB) trans-tibial prosthesis: a comparison with the patellar tendon bearing (PTB) trans-tibial prosthesis. Prosthet. Orthot. Int. 21, 175–178(1997)Google Scholar
  33. 33.
    Palevski, A., Glaich, I., Portnoy, S., etal.: Stress relaxation of porcine gluteus muscle subjected to sudden transverse deformation as related to pressure sore modeling. J. Biomech. Eng. 128, 782–787(2006)CrossRefGoogle Scholar
  34. 34.
    Papaioannou, G.: Non-invasive wound prevention, detection and analysis (2008). Patent No:025369–9002Google Scholar
  35. 35.
    Papaioannou, G.: Adaptable surface with variable pneumatic pressure control (2009). Patent No:025369-9004-00Google Scholar
  36. 36.
    Papaioannou, G., Demetropoulos, K.C., King, H.Y.: Predicting the effects of knee focal articular surface injury with a patient-specific finite element model. The Knee 17, 61–68(2009)CrossRefGoogle Scholar
  37. 37.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: Assessment of amputee socket-stump-residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis. J. Biomech. 43, 871–878 (2010)CrossRefGoogle Scholar
  38. 38.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: Assessment of internal and external prosthesis kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis. J. Prosthet. Orthot. 22, 1–15(2009)Google Scholar
  39. 39.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: Tracking high speed arthrokinematics using a new and high resolution Biplane Dynamic Roentgen Stereogrammetric method. Int. J. Imag. 2, 66–85(2009)Google Scholar
  40. 40.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: Assessment of internal and external prosthesis kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis (DRSA). 36th Academy Annual Meeting and Scientific Symposium, American Academy of Orthotics and Prosthetics Chicago, IL, USA, 24–27 Feb2010Google Scholar
  41. 41.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: (2010) Bilateral below knee amputee socket-stump kinematics using Biplane Dynamic Roentgen Stereogrammetric Analysis 56th Annual Meeting Orthopaedic Research Society New Orleans, Louisiana, 6–9 March2010Google Scholar
  42. 42.
    Papaioannou, G., Mitrogiannis, C., Nianios, G., etal.: Dynamic Roentgen-Stereogrammetric Analysis (DRSA) of Socket-Tissue Kinematics during high impact activities in trans-femoral amputees. 36th Anuual meeting of the American Avademy of Orthotists and Prosthetists Chicago, IL, USA, 24–27 Feb2010Google Scholar
  43. 43.
    Papaioannou, G., Nianios, G., Mitrogiannis, C., etal.: Patient-specific knee joint finite element model validation with high-accuracy kinematics from biplane Dynamic Roentgen Stereogrammetric Analysis. J. Biomech.41, 2633–2638(2008)CrossRefGoogle Scholar
  44. 44.
    Papaioannou, G., Protopappas, C.V., Tsopelas, P., etal.: A new Method for pressure sensor Equilibration and conditioning. Brazil. J. Biomotric. 2, 176–195(2008)Google Scholar
  45. 45.
    Pezzin, L.E., Dillingham, T.R., MacKenzie, E.J., etal.: (2004) Use and satisfaction with prosthetic limb devices and related services. Archiv. Phys. Med. Rehabilit. 85, 723–729(2008)CrossRefGoogle Scholar
  46. 46.
    Polliack, A.A., Sieh, R.C., Craig, D.D., etal.: Scientific validation of two commercial pressure sensor systems for prosthetic socket fit. Prosthet. Orthot. Int. 24, 63–73(2000)CrossRefGoogle Scholar
  47. 47.
    Portnoy, S., Yarnitzky, G., Yizhar, Z., etal.: Real-time patient-specific finite element analysis of residual limb stresses in transtibial amputees during treadmill walking. J. Biomech.39, S539(2007)CrossRefGoogle Scholar
  48. 48.
    Portnoy, S., Yizhar, Z., Shabshin, N., etal.: Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee. J. Biomech.41, 1897–1909(2008)CrossRefGoogle Scholar
  49. 49.
    Pramanik, C., Saha, H., Gangopadhyay, U.: Design optimization of a high performance silicon MEMS piezoresistive pressure sensor for biomedical applications. J. Micromech. Microeng. 16, 2060–2066(2006)CrossRefGoogle Scholar
  50. 50.
    Report on the State-of-The-Science meeting in prosthetics and orthotics. Research in P&O: Are We Addressing Clinically-Relevant Problems. Northwestern University Feinberg School of Medicine Chicago, USA(2006)Google Scholar
  51. 51.
    Reynolds, D.: Shape design and interface load analysis for below-knee prosthetic sockets. Ph.D dissertation, University of California, Berkeley, USA(1988)Google Scholar
  52. 52.
    Reynolds, D.P., Lord, M.: Interface load analysis for computer-aided design of below-knee prosthetic sockets. Med. Biol. Eng. Comput. 30, 419–426(1992)CrossRefGoogle Scholar
  53. 53.
    Sanders, J.E., Bell, D.M., Okumura, R.M., etal.: Effects of alignment changes on stance phase pressures and shear stresses on transtibial amputees: measurements from 13 transducer sites. IEEE Trans. Rehabil. Eng. 6, 21–31(1998)CrossRefGoogle Scholar
  54. 54.
    Sanders, J.E., Cassisi, D.V.: Mechanical performance of inflatable inserts used in limb prosthetics. J. Rehabil. Res. Dev. 38, 365–374(2001)Google Scholar
  55. 55.
    Sanders, J.E., Daly, C.H.: Measurement of stresses in the three orthogonal directions at the residual limb-prosthetic socket interface. IEEE Trans. Rehabil. Eng. 1, 79–85(1993)CrossRefGoogle Scholar
  56. 56.
    Sanders, J.E., Greve, J.M., Clinton, C., etal.: Clinical study: Changes in interface pressure and stump shape over time: Preliminary results from a trans-tibial amputee subject. Prosthet. Orthot. Int. 24, 163–168(2000)CrossRefGoogle Scholar
  57. 57.
    Shrimpton, P.C., Hillier, M.C., Lewis, M.A., etal.: National survey of doses from CT in the UK: 2003. Br. J. Radiol. 79, 968–980(2006)CrossRefGoogle Scholar
  58. 58.
    Silver-Thorn, M.B.: Generic, geometric finite element analysis of the transtibial residual limb and prosthetic socket. J. Rehabil. Res. Dev. 34, 171–186(1997)Google Scholar
  59. 59.
    Silver-Thorn, M.B., Childress, D.C.: Parametric analysis using the finite element method to investigate prosthetic interface stresses for persons with trans-tibial amputation. J. Rehabil. Res. Dev. 33, 227–238(1996)Google Scholar
  60. 60.
    Silver-Thorn, M.B., Steege, J.W., Childress, D.S.: A review of prosthetic interface stress investigations. J. Rehabil. Res. Dev. 33, 253–266(1996)Google Scholar
  61. 61.
    Smith, K.E., Commean, P.K., Vannier, M.W.: In vivo 3D measurement of soft tissue change due to lower limb prostheses using spiral computed tomography. Radiology 200, 843–850(1996)Google Scholar
  62. 62.
    Smith, K.E., Vannier, M.W., Commean, P.K.: Spiral CT volumetry of below knee residua. IEEE Trans. Rehabil. Eng. 3, 235–241(1995)CrossRefGoogle Scholar
  63. 63.
    Soderberg, B., Ryd, L., Person, B.M.: Roentgen stereogrametric analysis of motion between the bone and the socket in the transtibial amputation prosthesis: a case study. J. Prosthet. Orthot. 15, 95–99(2003)CrossRefGoogle Scholar
  64. 64.
    Vannier, M.W., Commean, P.K., Brunsden, B.S., etal.: Visualization of prosthesis fit in lower-limb amputees. IEEE Comput. Graph. Appl. 17, 16–29(1997)CrossRefGoogle Scholar
  65. 65.
    Vannier, M.W., Commean, P.K., Smith, K.E.: 3D Lower- extremity residua measurement systems error analysis. J. Prosthet. Orthot. 9, 67–76(1997)Google Scholar
  66. 66.
    Verni, J.: ComScan 3D scanning semispherical work envelope. Application No # 11/438, 181. filed: 05/22/2006(2006)Google Scholar
  67. 67.
    Williams, R.B., Porter, D., Roberts, V.C.: Triaxial force transducer for investigating stresses at the stump/socket interface. Med. Biol. Eng. Comput. 1, 89–96(1992)CrossRefGoogle Scholar
  68. 68.
    Otto Bock: Accessed 15 Jan 2010
  69. 69.
    Yiğiter, K., Sener, G., Bayar, K.: Comparison of the effects of patellar tendon bearing and total surface bearing sockets on prosthetic fitting and rehabilitation. Prosthet. Orthot. Int. 26, 206–212(2002)CrossRefGoogle Scholar
  70. 70.
    You, B.-M., Siy, P., Anderst, W., etal.: In-vivo measurement of 3D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans. Med. Imaging 20, 514–525(2001)CrossRefGoogle Scholar
  71. 71.
    Zhang, M., Lee, W.: Quantifying the regional load bearing ability of trans-tibial residual limbs. Prosthet. Orthot. Int. 30, 25–34(2006)CrossRefGoogle Scholar
  72. 72.
    Zhang, M., Lord, M., Turner-Smith, A.R., etal.: Development of a nonlinear finite element modeling of the below-knee prosthetic socket interface. Med. Eng. Phys. 17, 559–566(1995)CrossRefGoogle Scholar
  73. 73.
    Zhang, M., Mak, A.F.: A finite element analysis of the load transfer between an above-knee residual limb and its prosthetic socket– roles of interfacial friction and distal-end boundary conditions. IEEE Trans. Rehabil. Eng. 4, 337–346(1996)CrossRefGoogle Scholar
  74. 74.
    Zhang, M., Turner-Smith, A.R., Tanner, A., etal.: Clinical investigation of the pressure and shear stress on the trans-tibial stump with a prosthesis. Med. Eng. Phys. 20, 188–198(1998)CrossRefGoogle Scholar
  75. 75.
    Ziegler-Graham, K., MacKenzie, E., Ephraim, P., etal.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89, 422–429(2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • George Papaioannou
    • 1
  • Dimitris Tsiokos
    • 1
  • Goeran Fiedler
    • 1
  • Christos Mitrogiannis
    • 1
  • Ilya Avdeev
    • 1
  • Jake Wood
    • 1
  • Ray McKinney
    • 1
  1. 1.Wisconsin Institute for Biomedical Health Technology, Director of “MOVE Center”, Department of Civil Engineering and Mechanics, College of Engineering and Applied Science and Department of Occupational Therapy, College of Health SciencesUniversity of Wisconsin, MilwaukeeMilwaukeeUSA

Personalised recommendations