Skip to main content

Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis

  • Chapter
  • First Online:

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 19))

Abstract

The blood flow dynamics in microcirculation depends strongly on the microvascular networks composed with short irregular vessel segments which are linked by numerous bifurcations. This paper presents the application of a confocal micro-PTV system to track RBCs through a rectangular polydimethysiloxane (PDMS) microchannel with a bifurcation. By using a confocal micro-PTV system, we have measured the effect of bifurcation on the flow behaviour of both fluorescent particles diluted in pure water and RBCs in concentrated suspensions. After performing simulations with the commercial finite element software package POLYFLOW®;, some experimental results were compared with the numerical results and the limitations of these simulations were outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abramoff, M., Magelhaes, P., Ram, S.: Image processing with image J. Biophotonics Int. 11, 36–42(2004)

    Google Scholar 

  2. Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)

    Article  Google Scholar 

  3. Chien, S., Usami, S., Skalak, R.: Blood flow in small tubes In: Renkins, M., Michel, C.C. (eds.) Handbook of Physiology–The Cardiovascular System IV, pp.217–249. American Physiological Society, Bethesda(1984)

    Google Scholar 

  4. Dias, R.P.: Size fractionation by slalom chromatography and hydrodynamic chromatography. Recent Patents Eng. 2, 95–103(2008)

    Article  MathSciNet  Google Scholar 

  5. Dias, R.P., Fernandes, C.S., etal.: Starch analysis using hydrodynamic chromatography with a mixed-bed particle column, Carbohydr. Polym. 74, 852–857(2008)

    Article  Google Scholar 

  6. Dupin, M.M., Halliday, I., etal.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E. 75, 066707(2007)

    Article  Google Scholar 

  7. Eggleton, C.D., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids. 10, 1834–1845(1998)

    Article  Google Scholar 

  8. Fernandes, C.S., Dias, R.P., etal.: Simulation of stirred yoghurt processing in plate heat exchangers. J. Food Eng. 69, 281–290(2005)

    Article  Google Scholar 

  9. Fernandes, C.S., Dias, R.P., etal.: Laminar flow in chevron-type plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor. Chem. Eng. Process.: Process Intensif. 46, 825–833(2007)

    Google Scholar 

  10. Fernandes, C.S., Dias, R.P., etal.: Friction factors of power-law fluids in plate heat exchangers. J. Food Eng. 89, 441–447(2008)

    Article  Google Scholar 

  11. Goldsmith, H., Turitto, V.: Rheological aspects of thrombosis and haemostasis: Basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55, 415–435(1986)

    Google Scholar 

  12. Johnston, B.M., Johnston, P.R., etal.: Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J. Biomech.37, 709–720(2004)

    Article  Google Scholar 

  13. Lima, R., Ishikawa, T., etal.: Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Ann. Biomed. Eng. 37, 1546–1559 (2009)

    Article  Google Scholar 

  14. Lima, R., Ishikawa, T., etal.: Blood flow behavior in microchannels: Advances and future trends. In: Single and Two-Phase Flows on Chemical and Biomedical Engineering. Bentham (in press) (2011)

    Google Scholar 

  15. Lima, R., Wada, S., etal.: Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Tech.17, 797–808(2006)

    Article  Google Scholar 

  16. Lima, R., Wada, S., etal.: In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles. J. Biomech.40, 2752–2757(2007)

    Article  Google Scholar 

  17. Lima, R., Wada, S., etal.: In vitro blood flow in a rectangular PDMS microchannel: Experimental observations using a confocal micro-PIV system. Biomed. Microdevices 2(10), 153–167(2008)

    Article  Google Scholar 

  18. Liu, W.K., Liu, Y., etal.: Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Eng. 195, 1722–1749(2006)

    Article  MATH  Google Scholar 

  19. Kondo, H., Imai, Y., etal.: Hemodynamic analysis of microcirculation in malaria infection. Ann. Biomed. Eng. 37, 702–709(2009)

    Article  Google Scholar 

  20. Maeda, N.: Erythrocyte rheology in microcirculation. Jpn. J. Physiol. 46, 1–14(1996)

    Article  Google Scholar 

  21. Meijering, E., Smal, I., Danuser, G.: Tracking in molecular bioimaging. IEEE Signal Process. Mag. 3(23), 46–53(2006)

    Article  Google Scholar 

  22. Oliveira, B., Lagoela, M., etal.: Analyses of the blood flow in a microchannel with a bifurcation. In: Proceedings of 3Congresso Nacional de Biomecânica, Bragança, Portugal(2009)

    Google Scholar 

  23. Omori, T., Ishikawa, T. etal.: Behavior of a red blood cell in a simple shear flow simulated by a boundary element method, In: Proceedings of Bioengineering 08, London, UK(2008)

    Google Scholar 

  24. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–233 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  25. Popel, A., Johnson, P.: Microcirculation and hemorheology. Annu. Rev. Fluid Mech.37, 43–69(2005)

    Article  MathSciNet  Google Scholar 

  26. Pozrikidis, C.: Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Eng. 31, 1194–1205(2003)

    Article  Google Scholar 

  27. Pries, A., Secomb, T., etal.: Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915(1994)

    Google Scholar 

  28. Small, H.: Hydrodynamic chromatography a technique for size analysis of colloidal particles. J. Colloid. Interface Sci. 48, 147–161(1974)

    Article  Google Scholar 

  29. Succi, S.: The Lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press, Oxford(2001)

    Google Scholar 

  30. Tsubota, K., etal.: Particle method for computer simulation of red blood cell motion in blood flow. Comp. Methods Programs Biomed. 83, 139–146(2006)

    Article  Google Scholar 

  31. Univerdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100, 25–37(1992)

    Article  Google Scholar 

  32. Venema, E., Kraak, J.C., etal.: Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles. J. Chromatogr. A 740, 159–167(1996)

    Article  Google Scholar 

  33. Yamaguchi, T., Ishikawa, T., etal.: Computational blood flow analysis– new trends and methods. J. Biomech. Sci. Eng. 1, 29–50(2006)

    Article  Google Scholar 

  34. Youngren, G.K., Acrivos, A.: Stokes flow past a particle of arbitrary shape: A numerical method of solution. J. Fluid Mech.69, 377–403(1975)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wilkinson, W.L.: Non-Newtonian fluids: Fluid mechanics, mixing and heat transfer, pp.61–63. Pergamon Press, London(1960)

    Google Scholar 

  36. Zhang, J.B., Kuang, Z.B.: Study on blood constitutive parameters in different blood constitutive equations. J. Biomech.33, 355–360(2000)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the following grants: Grant-in-Aid for Science and Technology (BII/UNI/0532/EME/2008, PTDC/SAU-BEB/108728/2008, PTDC/SAU-BEB/105650/2008 and PTDC/EME-MFE/099109/2008) from the Science and Technology Foundation (FCT) and COMPETE, Portugal and Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS; No.19100008). We also acknowledge the support from the 2007 Global COE Program “Global Nano-Biomedical Engineering Education and Research Network”. The authors would like also to thank Dr. C. Balsa for his valuable assistance and support for the MATLAB numerical calculations and Ms. B. Oliveira, Ms. D. Cidre and Mr. M. Lagoela for their valuable technical assistance in this researchwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lima, R., Fernandes, C.S., Dias, R., Ishikawa, T., Imai, Y., Yamaguchi, T. (2011). Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis. In: Tavares, J., Jorge, R. (eds) Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 19. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0011-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0011-6_17

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0010-9

  • Online ISBN: 978-94-007-0011-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics