Advertisement

Microscale Flow Dynamics of Red Blood Cells in Microchannels: An Experimental and Numerical Analysis

  • R. LimaEmail author
  • C. S. Fernandes
  • R. Dias
  • T. Ishikawa
  • Y. Imai
  • T. Yamaguchi
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)

Abstract

The blood flow dynamics in microcirculation depends strongly on the microvascular networks composed with short irregular vessel segments which are linked by numerous bifurcations. This paper presents the application of a confocal micro-PTV system to track RBCs through a rectangular polydimethysiloxane (PDMS) microchannel with a bifurcation. By using a confocal micro-PTV system, we have measured the effect of bifurcation on the flow behaviour of both fluorescent particles diluted in pure water and RBCs in concentrated suspensions. After performing simulations with the commercial finite element software package POLYFLOW ®;, some experimental results were compared with the numerical results and the limitations of these simulations were outlined.

Keywords

Blood flow Microvascular networks Bifurcation Microchannel 

Notes

Acknowledgements

This study was supported in part by the following grants: Grant-in-Aid for Science and Technology (BII/UNI/0532/EME/2008, PTDC/SAU-BEB/108728/2008, PTDC/SAU-BEB/105650/2008 and PTDC/EME-MFE/099109/2008) from the Science and Technology Foundation (FCT) and COMPETE, Portugal and Grant-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS; No.19100008). We also acknowledge the support from the 2007 Global COE Program “Global Nano-Biomedical Engineering Education and Research Network”. The authors would like also to thank Dr. C. Balsa for his valuable assistance and support for the MATLAB numerical calculations and Ms. B. Oliveira, Ms. D. Cidre and Mr. M. Lagoela for their valuable technical assistance in this researchwork.

References

  1. 1.
    Abramoff, M., Magelhaes, P., Ram, S.: Image processing with image J. Biophotonics Int. 11, 36–42(2004)Google Scholar
  2. 2.
    Bagchi, P.: Mesoscale simulation of blood flow in small vessels. Biophys. J. 92, 1858–1877 (2007)CrossRefGoogle Scholar
  3. 3.
    Chien, S., Usami, S., Skalak, R.: Blood flow in small tubes In: Renkins, M., Michel, C.C. (eds.) Handbook of Physiology–The Cardiovascular System IV, pp.217–249. American Physiological Society, Bethesda(1984)Google Scholar
  4. 4.
    Dias, R.P.: Size fractionation by slalom chromatography and hydrodynamic chromatography. Recent Patents Eng. 2, 95–103(2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Dias, R.P., Fernandes, C.S., etal.: Starch analysis using hydrodynamic chromatography with a mixed-bed particle column, Carbohydr. Polym. 74, 852–857(2008)CrossRefGoogle Scholar
  6. 6.
    Dupin, M.M., Halliday, I., etal.: Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E. 75, 066707(2007)CrossRefGoogle Scholar
  7. 7.
    Eggleton, C.D., Popel, A.S.: Large deformation of red blood cell ghosts in a simple shear flow. Phys. Fluids. 10, 1834–1845(1998)CrossRefGoogle Scholar
  8. 8.
    Fernandes, C.S., Dias, R.P., etal.: Simulation of stirred yoghurt processing in plate heat exchangers. J. Food Eng. 69, 281–290(2005)CrossRefGoogle Scholar
  9. 9.
    Fernandes, C.S., Dias, R.P., etal.: Laminar flow in chevron-type plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor. Chem. Eng. Process.: Process Intensif. 46, 825–833(2007)Google Scholar
  10. 10.
    Fernandes, C.S., Dias, R.P., etal.: Friction factors of power-law fluids in plate heat exchangers. J. Food Eng. 89, 441–447(2008)CrossRefGoogle Scholar
  11. 11.
    Goldsmith, H., Turitto, V.: Rheological aspects of thrombosis and haemostasis: Basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55, 415–435(1986)Google Scholar
  12. 12.
    Johnston, B.M., Johnston, P.R., etal.: Non-Newtonian blood flow in human right coronary arteries: Steady state simulations. J. Biomech.37, 709–720(2004)CrossRefGoogle Scholar
  13. 13.
    Lima, R., Ishikawa, T., etal.: Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Ann. Biomed. Eng. 37, 1546–1559 (2009)CrossRefGoogle Scholar
  14. 14.
    Lima, R., Ishikawa, T., etal.: Blood flow behavior in microchannels: Advances and future trends. In: Single and Two-Phase Flows on Chemical and Biomedical Engineering. Bentham (in press) (2011)Google Scholar
  15. 15.
    Lima, R., Wada, S., etal.: Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Tech.17, 797–808(2006)CrossRefGoogle Scholar
  16. 16.
    Lima, R., Wada, S., etal.: In vitro confocal micro-PIV measurements of blood flow in a square microchannel: The effect of the haematocrit on instantaneous velocity profiles. J. Biomech.40, 2752–2757(2007)CrossRefGoogle Scholar
  17. 17.
    Lima, R., Wada, S., etal.: In vitro blood flow in a rectangular PDMS microchannel: Experimental observations using a confocal micro-PIV system. Biomed. Microdevices 2(10), 153–167(2008)CrossRefGoogle Scholar
  18. 18.
    Liu, W.K., Liu, Y., etal.: Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Eng. 195, 1722–1749(2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kondo, H., Imai, Y., etal.: Hemodynamic analysis of microcirculation in malaria infection. Ann. Biomed. Eng. 37, 702–709(2009)CrossRefGoogle Scholar
  20. 20.
    Maeda, N.: Erythrocyte rheology in microcirculation. Jpn. J. Physiol. 46, 1–14(1996)CrossRefGoogle Scholar
  21. 21.
    Meijering, E., Smal, I., Danuser, G.: Tracking in molecular bioimaging. IEEE Signal Process. Mag. 3(23), 46–53(2006)CrossRefGoogle Scholar
  22. 22.
    Oliveira, B., Lagoela, M., etal.: Analyses of the blood flow in a microchannel with a bifurcation. In: Proceedings of 3Congresso Nacional de Biomecânica, Bragança, Portugal(2009)Google Scholar
  23. 23.
    Omori, T., Ishikawa, T. etal.: Behavior of a red blood cell in a simple shear flow simulated by a boundary element method, In: Proceedings of Bioengineering 08, London, UK(2008)Google Scholar
  24. 24.
    Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–233 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Popel, A., Johnson, P.: Microcirculation and hemorheology. Annu. Rev. Fluid Mech.37, 43–69(2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Pozrikidis, C.: Numerical simulation of the flow-induced deformation of red blood cells. Ann. Biomed. Eng. 31, 1194–1205(2003)CrossRefGoogle Scholar
  27. 27.
    Pries, A., Secomb, T., etal.: Resistance to blood flow in microvessels in vivo. Circ. Res. 75, 904–915(1994)Google Scholar
  28. 28.
    Small, H.: Hydrodynamic chromatography a technique for size analysis of colloidal particles. J. Colloid. Interface Sci. 48, 147–161(1974)CrossRefGoogle Scholar
  29. 29.
    Succi, S.: The Lattice Boltzmann Equation for Fluid Mechanics and Beyond, Clarendon Press, Oxford(2001)Google Scholar
  30. 30.
    Tsubota, K., etal.: Particle method for computer simulation of red blood cell motion in blood flow. Comp. Methods Programs Biomed. 83, 139–146(2006)CrossRefGoogle Scholar
  31. 31.
    Univerdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible multi-fluid flows. J. Comput. Phys. 100, 25–37(1992)CrossRefGoogle Scholar
  32. 32.
    Venema, E., Kraak, J.C., etal.: Packed-column hydrodynamic chromatography using 1-μm non-porous silica particles. J. Chromatogr. A 740, 159–167(1996)CrossRefGoogle Scholar
  33. 33.
    Yamaguchi, T., Ishikawa, T., etal.: Computational blood flow analysis– new trends and methods. J. Biomech. Sci. Eng. 1, 29–50(2006)CrossRefGoogle Scholar
  34. 34.
    Youngren, G.K., Acrivos, A.: Stokes flow past a particle of arbitrary shape: A numerical method of solution. J. Fluid Mech.69, 377–403(1975)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Wilkinson, W.L.: Non-Newtonian fluids: Fluid mechanics, mixing and heat transfer, pp.61–63. Pergamon Press, London(1960)Google Scholar
  36. 36.
    Zhang, J.B., Kuang, Z.B.: Study on blood constitutive parameters in different blood constitutive equations. J. Biomech.33, 355–360(2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Lima
    • 1
    • 2
    Email author
  • C. S. Fernandes
    • 1
  • R. Dias
    • 1
    • 2
  • T. Ishikawa
    • 3
  • Y. Imai
    • 3
  • T. Yamaguchi
    • 4
  1. 1.ESTiG, IPBBragancaPortugal
  2. 2.CEFT, FEUPPortoPortugal
  3. 3.Department of Bioengineering & Robotics, Graduate School of EngineeringTohoku UniversitySendaiJapan
  4. 4.Department of Biomedical Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan

Personalised recommendations