Advertisement

Flow of a Blood Analogue Solution Through Microfabricated Hyperbolic Contractions

  • P. C. Sousa
  • I. S. Pinho
  • F. T. Pinho
  • M. S. N. OliveiraEmail author
  • M. A. Alves
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)

Abstract

The flow of a blood analogue solution past a microfabricated hyperbolic contraction followed by an abrupt expansion was investigated experimentally. The shape of the contraction was designed in order to impose a nearly constant strain rate to the fluid along the centerline of the microgeometry. The flow patterns of the blood analogue solution and of a Newtonian reference fluid (deionized water), captured using streak line imaging, are quite distinct and illustrate the complex behavior of the blood analogue solution flowing through the microgeometry. The flow of the blood analogue solution shows elastic-driven effects with vortical structures emerging upstream of the contraction, which are absent in Newtonian fluid flow. In both cases the flow also develops instabilities downstream of the expansion but these are inertia driven. Therefore, for the blood analogue solution at high flow rates the competing effects of inertia and elasticity lead to complex flow patterns and unstable flow develops.

Keywords

Blood analogue fluid Extensional flow Microfluidics Viscoelasticity Flow visualization Hyperbolic contraction 

Notes

Acknowledgements

The authors gratefully acknowledge funding by FCT via projects PTDC/EQU-FTT/71800/2006, REEQ/262/EME/2005, REEQ/928/EME/2005, PTDC/EME-MFE/099109/2008 and PTDC/EQU-FTT/70727/2006. In addition, PCS and ISP acknowledge the financial support of scholarships SFRH/BD/28846/2006 and CEFT/BII/2008/01.

References

  1. 1.
    Bird, R.B., Armstrong, R.C., Hassager O.: Dynamics of Polymeric Liquids. Volume 1: Fluid Dynamics Wiley, New York(1987)Google Scholar
  2. 2.
    Caro, C.G., Pedley, T.G., Seed, W.A.: Mechanics of the Circulation. Medical and Technical Publishers, London(1974)Google Scholar
  3. 3.
    Cherdron, W., Durst, F., Whitelaw, J.H.: Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J Fluid Mech 84, 13–31(1978)CrossRefGoogle Scholar
  4. 4.
    Entov, V.M., Hinch, E.J.: Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newt Fluid Mech 72, 31–54(1997)CrossRefGoogle Scholar
  5. 5.
    Ku, D.N.: Blood flow in arteries. Annual Rev Fluid Mech 29, 399–434(1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    McDonald, J.C., Duffy, D.C., Anderson, J.R., et al.: Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40(2000)CrossRefGoogle Scholar
  7. 7.
    McKinley, G.H., Rodd, L.E., Oliveira, M.S.N., et al.: Extensional flows of polymeric solutions in microfluidic converging/diverging geometries. J Cent South Univ Technol 14, 6–9(2007)CrossRefGoogle Scholar
  8. 8.
    Oliveira, M.S.N., Alves, M.A., Pinho, F.T., et al.: Viscous flow through microfabricated hyperbolic contractions. Exp Fluids 43, 437–451(2007)CrossRefGoogle Scholar
  9. 9.
    Oliveira, M.S.N., Rodd, L.E., McKinley, G.H., et al.: Simulations of extensional flow in microrheometric devices. Microfluid Nanofluid 5, 809–826(2008)CrossRefGoogle Scholar
  10. 10.
    Owens, R.J.: A new microstructure-based constitutive model for human blood. J Non-Newt Fluid Mech 140, 57–70(2006)zbMATHCrossRefGoogle Scholar
  11. 11.
    Phan-Thien, N., Tanner, R.I.: A new constitutive equation derived from network theory. J Non-Newt Fluid Mech 2, 353–365(1977)CrossRefGoogle Scholar
  12. 12.
    Poole, R.J., Pinho, F.T., Alves, M.A., etal: The effect of expansion ratio for creeping expansion flows of UCM fluids. J Non-Newt Fluid Mech 163, 35–44(2009)CrossRefGoogle Scholar
  13. 13.
    Sdougos, H.P., Bussolari, S.R., Dewey, C.F.: Secondary flow and turbulence in a cone-and-plate device. J Fluid Mech 138, 379–404(1984)CrossRefGoogle Scholar
  14. 14.
    Thurston, G.B.: Viscoelastic properties of blood and blood analogs. Adv Hemodyn Hemorheol 1, 1–30(1996)Google Scholar
  15. 15.
    Turitto, V.T.: Blood viscosity mass transport and thrombogenesis. Prog Hemost Thrombog 6, 139–177(1982)Google Scholar
  16. 16.
    Vlastos, G., Lerche, D., Koch, B., et al.: The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheol Acta 36, 160–172(1997)Google Scholar
  17. 17.
    Waite, L., Fine, J.: Applied Biofluid Mechanics. McGraw-Hill, New York(2007)Google Scholar
  18. 18.
    Xue, S.-C., Phan-Thien, N., Tanner, R.I. Numerical study of secondary flows of viscoelastic fluid in straight pipes by an implicit finite volume method. J Non-Newt Fluid Mech 59, 191–213 (1995)CrossRefGoogle Scholar
  19. 19.
    Yilmaz, F., Gundogdu, M.Y.: A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J 20, 197–211 (2008)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. C. Sousa
    • 1
  • I. S. Pinho
    • 1
  • F. T. Pinho
    • 2
  • M. S. N. Oliveira
    • 1
    Email author
  • M. A. Alves
    • 1
  1. 1.Departamento de Engenharia Química, Centro de Estudos de Fenómenos de TransporteFaculdade de Engenharia da Universidade do PortoPortoPortugal
  2. 2.Centro de Estudos de Fenómenos de Transporte, Departamento de Engenharia MecânicaFaculdade de Engenharia da Universidade do PortoPortoPortugal

Personalised recommendations