A Novel Template-Based Approach to the Segmentation of the Hippocampal Region

  • M. AielloEmail author
  • P. Calvini
  • A. Chincarini
  • M. Esposito
  • G. Gemme
  • F. Isgrò
  • R. Prevete
  • M. Santoro
  • S. Squarcia
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)


The work described in this document is part of a major work aiming at a complete pipeline for the extraction of clinical parameters from MR images of the brain, for the diagnosis of neuro-degenerative diseases. A key step in this pipeline is the identification of a box containing the hippocampus and surrounding medial temporal lobe regions from T1-weighted magnetic resonance images, with no interactive input from the user. To this end we introduced in the existing pipeline a module for the segmentation of brain tissues based on a constrained Gaussians mixture model (CGMM), and a novel method for generating templates of the hippocampus. The templates are then combined in order to obtain only one template mask. This template mask is used, with a mask of the grey matter of the brain, for determining the hippocampus. The results have been visually evaluated by a small set of experts, and have been judged as satisfactory. A complete and exhaustive evaluation of the whole system is being planned.


Magnetic resonance Image analysis Hippocampus segmentation 



This work was partially funded by INFN within the MAGIC-5 research project.


  1. 1.
    Atiya, M., Hyman, B., Albert, M., Killiany, R.: Structural magnetic resonance imaging in established and prodroaml Alzheimer disease: a review. Alz. Dis. Assoc. Dis. 17(3), 177–195 (2003)CrossRefGoogle Scholar
  2. 2.
    Braak, H., Braak, E.: Neuropathological staging of Alzheimer-related changes. Acta. Neuropathol. 82, 239–259 (1991)CrossRefGoogle Scholar
  3. 3.
    Calvini, P., Chincarini, A., Donadio, S., Gemme, G., Squarcia, S., Nobili, F.N., Rodriguez, G., Bellotti, R., Catanzariti, E., Cerello, P., Mitri, I.D., Fantacci, M.: Automatic localization of the hippocampal region in mr images to asses early diagnosis of Alzheimer’s disease in MCI patients. In: Nuclear Science Symposium Conference Record, pp. 4348–4354 (2008)Google Scholar
  4. 4.
    Calvini, P., Chincarini, A., Gemme, G., Penco, M., Squarcia, S., Nobili, F., Rodriguez, G., Bellotti, R., Catanzariti, E., Cerello, P., Mitri, I.D., Fantacci, M.: Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease. Med. Phys. 36(8), 3737–3747 (2009)CrossRefGoogle Scholar
  5. 5.
    Chetelat, G., Baron, J.: Early diagnosis of Alzheimer disease: contribution of structural neuroimaging. Neuoroimage 18(2), 525–541 (2003)CrossRefGoogle Scholar
  6. 6.
    Chupin, M., Chételat, G., Lemieux, L., Dubois, B., Garnero, L., Benali, H., Eustache, F., Lehéricy, S., Desgranges, B., Colliot, O.: Fully automatic hippocampus segmentation discriminates between early Alzheimer’s disease and normal aging. In: Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 97–100 (2008)Google Scholar
  7. 7.
    Dubois, B., Albert, M.: Amnestic MCI or prodromal Alzheimer disease? Lancet Neurol. 3(4), 246–248 (2004)CrossRefGoogle Scholar
  8. 8.
    Duchesne, S., Pruessner, J.C., Collins, D.L.: Appearance-based segmentation of medial temporal lobe structures. Neuroimage 17(2), 515–531 (2002)CrossRefGoogle Scholar
  9. 9.
    Evans, A., Kambler, M., Collins, D., MacDonald, D.: An MRI-based probabilistic atlas of neuroanatomy. In: Shorvon, S., Fish, D., Andermann, F., Bydder, G., Stefan, H. (eds.) Magnetic Resonance Scanning and Epilepsy. NATO ASI Series A, Life Sciences, vol. 264, pp. 263–274. Plenum Press, New York (1994)Google Scholar
  10. 10.
    Greenspan, H., Ruf, A., Goldberger, J.: Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans. Med. Imag. 25(9), 1233–1245 (2006)CrossRefGoogle Scholar
  11. 11.
    Joshi, S., Pizer, S., Fletcher, P., Yushkevich, P., Thall, A., Marron, J.: Multiscale deformable model segmentation and statistical shape analysis using medial description. IEEE Trans. Med. Imag. 21(5), 538–550 (2002)CrossRefGoogle Scholar
  12. 12.
    Kantarci, K., Jack, C.: Neuroimaging in Alzheimer disease: an evidence based review. Neuroimag. Clin. N. Am. 13(2), 197–209 (2003)CrossRefGoogle Scholar
  13. 13.
    Kass, W., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefGoogle Scholar
  14. 14.
    Kelemen, A., Székely, G., Gerig, G.: Elastic model-based segmentation of 3D neurological data sets. IEEE Trans. Med. Imag. 18(10), 828–839 (1999)CrossRefGoogle Scholar
  15. 15.
    Lee, W., Gow, K., Zhao, Y., Staff, R.: Hybrid segmentation of the hippocampus in mr images. In: Proceedings of the 13th European Signal Processing Conference, Antalya, Turkey (2005)Google Scholar
  16. 16.
    Miller, J., Lorensen, W., O’Bara, R., Wozny, M.: Geometrically deformed models: A method for extracting closed geometric models from volume data. SIGGRAPH Comput. Graph. 25, 217–226 (1991)CrossRefGoogle Scholar
  17. 17.
    Petersen, R., Smith, G., Waring, S., Tangalos, E., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)CrossRefGoogle Scholar
  18. 18.
    Shen, D., Moffat, S., Resnick, S.M., Davatzikos, C.: Measuring size and shape of the hippocampus in MR images using a deformable shape model. NeuroImage 15, 422–434 (2002)CrossRefGoogle Scholar
  19. 19.
    Thirion, J.: Image matching as a diffusion process: an analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  20. 20.
    Thompson, P., Hayashi, K., deZubicaray, G., Janke, A., Rose, S., Semple, J., Hong, M., Herman, D., Gravano, D., Doddrell, D., Toga, A.: Mapping hippocampal and ventricular change in Alzheimers’s disease. Neuroimage 22(4), 1754–1766 (2004)CrossRefGoogle Scholar
  21. 21.
    Warfield, S., Zou, K., Wells, W.: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans. Med. Imag. 23, 903–921 (2004)CrossRefGoogle Scholar
  22. 22.
    Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L., Nordberg, A., Backman, L., Albert, M., Almkvist, O., Arai, H., Basun, H., Blennow, K., deLeon, M., DeCarli, C., Erkinjuntti, T., Giacobini, E., Graff, C., Hardy, J., Jack, C., Jorm, A., Ritchie, K., van Duijn, C., Visser, P., Petersen, R.: Mild cognitive impairment–beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. J.Intern. Med. 256(3), 240–246 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Aiello
    • 1
    Email author
  • P. Calvini
    • 2
  • A. Chincarini
    • 3
  • M. Esposito
    • 1
  • G. Gemme
    • 3
  • F. Isgrò
    • 1
  • R. Prevete
    • 1
  • M. Santoro
    • 4
  • S. Squarcia
    • 2
  1. 1.Dipartimento di Scienze FisicheUniversità di Napoli Federico II, and Istituto Nazionale di Fisica NucleareSezione di NapoliItaly
  2. 2.Dipartimento di FisicaUniversità di Genova, and Istituto Nazionale di Fisica NucleareSezione di GenovaItaly
  3. 3.Istituto Nazionale di Fisica NucleareSezione di GenovaItaly
  4. 4.Dipartimento di Informatica e Scienze dell’InformazioneUniversità di GenovaGenovaItaly

Personalised recommendations