Advertisement

Noisy Medical Image Edge Detection Algorithm Based on a Morphological Gradient Using Uninorms

  • Manuel González-HidalgoEmail author
  • Arnau Mir Torres
  • Daniel Ruiz Aguilera
  • Joan Torrens Sastre
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)

Abstract

Medical images edge detection is one of the most important pre-processing steps in medical image segmentation and 3D reconstruction. In this paper, an edge detection algorithm using an uninorm-based fuzzy morphology is proposed. It is shown that this algorithm is robust when it is applied to different types of noisy images. It improves the results of other well-known algorithms including classical algorithms of edge detection, as well as fuzzy-morphology based ones using the Łukasiewicz t-norm and umbra approach. It detects detailed edge features and thin edges of medical images corrupted by impulse or gaussian noise. Moreover, some different objective measures have been used to evaluate the filtered results obtaining for our approach better values than for other approaches.

Keywords

Noise reduction Edge detection Mathematical morphology Uninorms Representable uninorm Idempotent uninorm 

Notes

Acknowledgements

This work has been supported by the Government Spanish Grant MTM2009-10320 and TIN2007-67993, with FEDER support.

References

  1. 1.
    Bloch, I., Maître, H.: Fuzzy mathematical morphologies: a comparative study. Pattern Recogn. 28, 1341–1387 (1995)CrossRefGoogle Scholar
  2. 2.
    Bustince, H., Barrenechea, E., Pagola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Set. Syst. 160(13), 1819–1840 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  4. 4.
    Chen, T., Wu, Q.H., Rahmani-Torkaman, R., Hughes, J.: A pseudo top-hat mathematical morphological approach to edge detection in dark regions. Pattern Recogn. 35(1), 199–210 (2002)zbMATHCrossRefGoogle Scholar
  5. 5.
    De Baets, B.: Fuzzy morphology: A logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–68. Kluwer Academic Publishers, Norwell (1997)Google Scholar
  6. 6.
    De Baets, B., Fodor, J.: Residual operators of uninorms. Soft Comput. 3, 89–100 (1999)Google Scholar
  7. 7.
    De Baets, B., Kerre, E., Gupta, M.: The fundamentals of fuzzy mathematical morfologies part i: basics concepts. Int. J. Gen. Syst. 23, 155–171 (1995)zbMATHCrossRefGoogle Scholar
  8. 8.
    De Baets, B., Kwasnikowska, N., Kerre, E.: Fuzzy morphology based on uninorms. In: Proceedings of the 7th IFSA World Congress, pp. 215–220. Prague (1997)Google Scholar
  9. 9.
    Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertainty, Fuzziness, Knowledge-Based Systems 5, 411–427 (1997)Google Scholar
  10. 10.
    González, M., Ruiz-Aguilera, D., Torrens, J.: Algebraic properties of fuzzy morphological operators based on uninorms. In: Artificial Intelligence Research and Development, Frontiers in Artificial Intelligence and Applications, vol. 100, pp. 27–38. IOS Press, Amsterdam (2003)Google Scholar
  11. 11.
    González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D.: A robust edge detection algorithm based on a fuzzy mathematical morphology using uninorms (ϕMM-U morphology). In: Tavares, J.M.R., Jorge, R.M.N. (eds.) Computational Vision and Medical Image Processing: VipIMAGE 2009 09, pp. 630–635. CRC Press, Taylor & Francis, Inc., Bristol, PA, USA (2009)Google Scholar
  12. 12.
    González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Edge-images using a uninorm-based fuzzy mathematical morphology: Opening and closing. In: Tavares, J., Jorge, N. (eds.) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol. 13, pp. 137–157. Springer, Netherlands (2009)CrossRefGoogle Scholar
  13. 13.
    González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., Torrens, J.: Image analysis applications of morphological operators based on uninorms. In: Carvalho, P., Dubois, D., Kaymak,U., Sousa, J.M.C. (eds.) Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference (IFSA-EUSFLAT 2009), pp. 630–635. EUSFLAT Society, Lisbon, Portugal (2009) http://www.eusflat.org/publications/proceedings/IFSA-EUSFLAT{\_}2009/
  14. 14.
    González-Hidalgo, M., Mir-Torres, A., Sastre, J.T.: Noise reduction using alternate filters generated by fuzzy mathematical operators using uninorms (ϕMM-U morphology). In: Burillo, P., Bustince, H., Baets, B.D., Fodor, J. (eds.) EUROFUSE WORKSHOP 09, Preference Modelling and Decision Analysis, pp. 233–238. Public University of Navarra, Pamplona, Spain (2009)Google Scholar
  15. 15.
    Guimarães, S.J.F., Leite, N.J., Couprie, M., deAlbuquerqueAraújo, A.: A directional and parametrized transition detection algorithm based on morphological residues. In: Proceedings of the 15th Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI’02, pp. 261–268. IEEE Computer Society, Washington, DC, USA (2002)Google Scholar
  16. 16.
    Jiang, J.A., Chuang, C.L., Lu, Y.L., Fahn, C.S: Mathematical-morphology-based edge detectors for detection of thin edges in low-contrast regions. IET Image Process. 1(3), 269–277 (2007)Google Scholar
  17. 17.
    Nachtegael, M., Kerre, E.: Classical and fuzzy approaches towards mathematical morphology. In: Kerre, E.E., Nachtegael, M. (eds.) Fuzzy Techniques in Image Processing. Studies in Fuzziness and Soft Computing, vol. 52, pp. 3–57. Physica-Verlag, New York (2000)Google Scholar
  18. 18.
    Pastore, J.I., Moler, E., Ballarin, V.: Multiscale morphological operators and geodesic distance applied to computer axial tomography segmentation. Lat. Am. Trans. IEEE 5(1), 28–31 (2007)CrossRefGoogle Scholar
  19. 19.
    Pratt, W.K.: Digital Image Processing, 4th edn. Wiley (2007)Google Scholar
  20. 20.
    Ruiz-Aguilera, D., Torrens, J.: Residual implications and co-implications from idempotent uninorms. Kybernetika 40, 21–38 (2004)MathSciNetGoogle Scholar
  21. 21.
    Serra, J.: Image Analysis and Mathematical Morphology, vols. 1, 2. Academic, London (1982, 1988)Google Scholar
  22. 22.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  23. 23.
    Yu-qian, Z., Wei-hua, G., Zhen-cheng, C., Jing-tian, T., Ling-yun, L.: Medical images edge detection based on mathematical morphology. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, pp. 6492–6495. Shanghai, China (2005)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Manuel González-Hidalgo
    • 1
    Email author
  • Arnau Mir Torres
    • 2
  • Daniel Ruiz Aguilera
    • 2
  • Joan Torrens Sastre
    • 2
  1. 1.Computer Graphics, Vision and Artificial Intelligence Group, Mathematics and Computer Science DepartmentUniversity of the Balearic IslandsPalmaSpain
  2. 2.Fuzzy Logic and Information Fusion Group, Mathematics and Computer Science DepartmentUniversity of the Balearic IslandsPalmaSpain

Personalised recommendations