Automatic Segmentation of the Optic Radiation Using DTI in Healthy Subjects and Patients with Glaucoma

  • Ahmed El-RafeiEmail author
  • Tobias Engelhorn
  • Simone Waerntges
  • Arnd Doerfler
  • Joachim Hornegger
  • Georg Michelson
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 19)


The complexity of the diffusion tensor imaging (DTI) data and the interpersonal variability of the brain fiber structure make the identification of the fibers a difficult and time consuming task. In this work, an automated segmentation system of the optic radiation using DTI is proposed. The system is applicable to normal subjects and glaucoma patients. It is intended to aid future glaucoma studies. The automation of the system is based on utilizing physiological and anatomical information to produce robust initial estimates of the optic radiation. The estimated optic radiation initializes a statistical level set framework. The optic radiation is segmented by the surface evolution of the level set function. The system is tested using eighteen DTI-datasets of glaucoma patients and normal subjects. The segmentation results were compared to the manual segmentation performed by a physician experienced in neuroimaging and found to be in agreement with the known anatomy with 83% accuracy. The automation eliminates the necessity of medical experts’ intervention and facilitates studies with large number of subjects.


Diffusion tensor imaging (DTI) Segmentation Optic radiation Glaucoma 



The authors would like to thank Dr. B. Acar from Bogazici University ( for the valuable discussion of the segmentation system. The authors gratefully acknowledge funding of German academic exchange service (DAAD) and the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German National Science Foundation (DFG) in the framework of the excellence initiative.


  1. 1.
    Alexander, A.L., Hasan, K.M., Lazar, M., Tsuruda, J.S., Parker, D.L.: Analysis of partial volume effects in diffusion-tensor MRI. Magn. Reson. Med. 45(5), 770–780 (2001)CrossRefGoogle Scholar
  2. 2.
    Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)CrossRefGoogle Scholar
  3. 3.
    Basser, P.J., Jones, D.K.: Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7-8), 456–467 (2002)CrossRefGoogle Scholar
  4. 4.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)CrossRefGoogle Scholar
  5. 5.
    Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 111(3), 209–219 (1996)CrossRefGoogle Scholar
  6. 6.
    Bozkaya, U., Acar, B.: SMT: Split and merge tractography for DT-MRI. In: MICCAI, Brisbane, Australia. Lecture Notes in Computer Science, vol. 4792, pp. 153–160. Springer (2007)Google Scholar
  7. 7.
    Cartes-Zumelzu, F.W., Stavrou, I., Castillo, M., Eisenhuber, E., Knosp, E., Thurnher, M.M.: Diffusion-weighted imaging in the assessment of brain abscesses therapy. Am. J. Neuroradiol. 25(8), 1310–1317 (2004)Google Scholar
  8. 8.
    Chen, T.F., Lin, C.C., Chen, Y.F., Liu, H.M., Hua, M.S., Huang, Y.C., Chiu, M.J.: Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatr. Res. Neuroimaging 173(1), 15–21 (2009)CrossRefGoogle Scholar
  9. 9.
    Conturo, T.E., Lori, N.F., Cull, T.S., Akbudak, E., Snyder, A.Z., Shimony, J.S., Mckinstry, R.C., Burton, H., Raichle, M.E.: Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. USA 96(18), 10422–10427 (1999)CrossRefGoogle Scholar
  10. 10.
    Corouge, I., Fletcher, P., Joshi, S., Gouttard, S., Gerig, G.: Fiber tract-oriented statistics for quantitative diffusion tensor MRI analysis. Med. Image Anal. 10(5), 786–798 (2006)CrossRefGoogle Scholar
  11. 11.
    Dong, Q., Welsh, R.C., Chenevert, T.L., Carlos, R.C., Maly-Sundgren, P., Gomez-Hassan, D.M., Mukherji, S.K.: Clinical applications of diffusion tensor imaging. J. Magn. Reson. Imag. 19, 6–18 (2004)CrossRefGoogle Scholar
  12. 12.
    Fletcher, P.T., Joshi, S.C.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)zbMATHCrossRefGoogle Scholar
  13. 13.
    Garaci, F.G., Bolacchi, F., Cerulli, A., Melis, M., Span, A., Cedrone, C., Floris, R., Simonetti, G., Nucci, C.: Optic nerve and optic radiation neurodegeneration in patients with glaucoma: In: Vivo Analysis with 3-T Diffusion-Tensor MR Imaging. Radiology 252(2), 496–501 (2009)CrossRefGoogle Scholar
  14. 14.
    Hamarneh, G., Hradsky, J.: DTMRI segmentation using DT-snakes and DT-livewire. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 513–518 (2006)Google Scholar
  15. 15.
    Henry, R.G., Oh, J., Nelson, S.J., Pelletier, D.: Directional diffusion in relapsing-remitting multiple sclerosis: A possible in vivo signature of Wallerian degeneration. J. Magn. Reson. Imag. 18(4), 420–426 (2003)CrossRefGoogle Scholar
  16. 16.
    Hoffmann, E., Zangwill, L., Crowston, J., Weinreb, R.: Optic disk size and glaucoma. Surv. Ophthalmol. 52(5), 32–49 (2007)CrossRefGoogle Scholar
  17. 17.
    Huang, J., Friedland, R., Auchus, A.: Diffusion tensor imaging of normal-appearing white matter in mild cognitive impairment and early alzheimer disease: Preliminary evidence of axonal degeneration in the temporal lobe. Am. J. Neuroradiol. 28(10), 1943–1948 (2007)CrossRefGoogle Scholar
  18. 18.
    Hui, E., Fu, Q., So, K., Wu, E.: Diffusion tensor MR study of optic nerve degeneration in glaucoma. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, pp. 4312–4315 (2007)Google Scholar
  19. 19.
    Huppi, P.S., Murphy, B., Maier, S.E., Zientara, G.P., Inder, T.E., Barnes, P.D., Kikinis, R., Jolesz, F.A., Volpe, J.J.: Microstructural brain development after perinatal cerebral white matter injury assessed by diffusion tensor magnetic resonance imaging. Pediatrics 107(3), 455–460 (2001)CrossRefGoogle Scholar
  20. 20.
    Jones, D.: Tractography gone wild: Probabilistic fibre tracking using the wild bootstrap with diffusion tensor MRI. IEEE Trans. Med. Imag. 27(9), 1268–1274 (2008)CrossRefGoogle Scholar
  21. 21.
    Lansberg, M.G., Norbash, A.M., Marks, M.P., Tong, D.C., Moseley, M.E., Albers, G.W.: Advantages of adding diffusion-weighted magnetic resonance imaging to conventional magnetic resonance imaging for evaluating acute stroke. Arch. Neurol. 57(9), 1311–1316 (2000)CrossRefGoogle Scholar
  22. 22.
    Lazar, M., Weinstein, D.M., Tsuruda, J.S., Hasan, K.M., Arfanakis, K., Meyerand, M.E., Badie, B., Rowley, H.A., Haughton, V., Field, A., Alexander, A.L.: White matter tractography using diffusion tensor deflection. Hum. Brain. Mapp. 18(4), 306–321 (2003)CrossRefGoogle Scholar
  23. 23.
    Le Bihan, D., Mangin, J., Poupon, C., Clark, C., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imag. 13(4), 534–546 (2001)CrossRefGoogle Scholar
  24. 24.
    Lee, S., Uhm, K., Hong, C.: Retinal vessel diameter in normal and primary open-angle glaucoma. Kor. J. Ophthalmol. 12(1), 51–59 (1998)Google Scholar
  25. 25.
    Lenglet, C., Rousson, M., Deriche, R.: DTI segmentation by statistical surface evolution. IEEE Trans. Med. Imag. 25(6), 685–700 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mori, S., Barker, P.B.: Diffusion magnetic resonance imaging: Its principle and applications. Anat. Rec. 257(3), 102–109 (1999)CrossRefGoogle Scholar
  27. 27.
    Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A.V., Mahmood, A., Woods, R., Toga, A.W., Pike, G.B., Neto, P.R., Evans, A., Zhang, J., Huang, H., Miller, M.I., van Zijl, P., Mazziotta, J.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2), 570–582 (2008)CrossRefGoogle Scholar
  28. 28.
    Moseley, M.E., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M.F., Weinstein, P.R.: Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn. Reson. Med. 14(2), 330–346 (1990)CrossRefGoogle Scholar
  29. 29.
    Nucifora, P., Verma, R., Lee, S., Melhem, E.: Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245(2), 367–384 (2007)CrossRefGoogle Scholar
  30. 30.
    Parker, G.J., Haroon, H.A., Wheeler-Kingshott, C.A.: A framework for a streamline-based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. J. Magn. Reson. Imag. 18(2), 242–254 (2003)CrossRefGoogle Scholar
  31. 31.
    Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor computing. Int. J. Comput. Vision 66(1), 41–66 (2006)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern. Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  33. 33.
    Polo, V., Larrosa, J., Ferreras, A., Mayoral, F., Pueyo, V., Honrubia, F.: Retinal nerve fiber layer evaluation in open-angle glaucoma. Ophthalmologica 223(1), 2–6 (2009)CrossRefGoogle Scholar
  34. 34.
    Salat, D., Tuch, D., Greve, D., van der Kouwe, A., Hevelone, N., Zaleta, A., Rosen, B., Fischl, B., Corkin, S., Rosas, H.D., Dale, A.: Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 26(8), 1215–1227 (2005)CrossRefGoogle Scholar
  35. 35.
    Staempfli, P., Jaermann, T., Crelier, G., Kollias, S., Valavanis, A., Boesiger, P.: Resolving fiber crossing using advanced fast marching tractography based on diffusion tensor imaging. NeuroImage 30(1), 110–120 (2006)CrossRefGoogle Scholar
  36. 36.
    Wakana, S., Jiang, H., Nagae-Poetscher, L., van Zijl, P., Mori, S.: Fiber tract-based atlas of human white matter anatomy. Radiology 230(1), 77–87 (2004)CrossRefGoogle Scholar
  37. 37.
    Wang, Z., Vemuri, B.: DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Trans. Med. Imag. 24(10), 1267–1277 (2005)CrossRefGoogle Scholar
  38. 38.
    Yörük, E., Acar, B., Bammer, R.: A physical model for MR-DTI based connectivity map computation. In: MICCAI, Palm Springs, CA. Lecture Notes in Computer Science, vol. 3749, pp. 213–220. Springer (2005)Google Scholar
  39. 39.
    Zhou, X.: Diffusion tensor imaging: techniques and clinical applications. Engineering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual International Conference of the IEEE 2, 5223–5225. San Francisco, CA, USA (2004)Google Scholar
  40. 40.
    Zhukov, L., Museth, K., Breen, D., Whitaker, R., Barr, A.: Level set modeling and segmentation of DT-MRI brain data. J. Electronic Imag. 12(1), 125–133 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ahmed El-Rafei
    • 1
    Email author
  • Tobias Engelhorn
    • 2
  • Simone Waerntges
    • 3
  • Arnd Doerfler
    • 2
  • Joachim Hornegger
    • 1
  • Georg Michelson
    • 4
  1. 1.Pattern Recognition Lab, Department of Computer Science and Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander University Erlangen-NurembergErlangen-NurembergGermany
  2. 2.Department of NeuroradiologyFriedrich-Alexander University Erlangen-NurembergErlangen-NurembergGermany
  3. 3.Department of OphthalmologyFriedrich-Alexander University Erlangen-NurembergErlangen-NurembergGermany
  4. 4.Department of Ophthalmology and Interdisciplinary Center of Ophthalmic Preventive Medicine and ImagingFriedrich-Alexander University Erlangen-NurembergErlangen-NurembergGermany

Personalised recommendations