Advertisement

Ergodic Theorems of Birkhoff and von Neumann

Chapter
  • 979 Downloads
Part of the Texts and Readings in Mathematics book series (volume 6)

Abstract

The ergodic theorem of G. D. Birkhoff [2,3] is an early and very basic result of ergodic theory. Simpler versions of this theorem will be discussed before giving two well known proofs of the measure theoretic case. A third purely set theoretic proof will be given in Chapter 10.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    A. Bellow and W. Losert. The Weighted Pointwise Ergodic Theorem and The Individual Ergodic Theorem, Trans. Amer. Math. Soc. 288(1985), 307–345.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    G. D. Birkhoff. Proof of a Recurrence Theorem for Strongly Transitive Systems. Proc. Nat. Acad. Sci. U. S. A., 17 (1931), 650–655, Birkhoff: Collected Mathematical Papers, Vol. 2, 398–403, Dover, 1968.CrossRefzbMATHGoogle Scholar
  3. [3]
    G. D. Birkhoff. Proof of the Ergodic Theorem, Proc. Nat. Acad. Sci., U. S. A., 17 (1931), 656–660, Birkhoff: Collected Mathematical Papers,Vol 2, 404–408, Dover, 1968.CrossRefzbMATHGoogle Scholar
  4. [4]
    G. D. Birkhoff and B. O. Koopman. Recent Contributions to Ergodic Theory, Proc. Nat. Acad. Sci, U. S. A., 18 (1932), 279–282, Birkhoff: Collected Mathematical Papers, Vol. 2, 462–465, Dover, 1968CrossRefzbMATHGoogle Scholar
  5. [5]
    G. D. Birkhoff. Probability and Physical Systems, Bull Amer. Math. Soc., 38 (1932), 361–379, Birkhoff: Collected Mathematical Papers, Vol. 2, 794–812, Dover, 1968.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. D. Birkhoff. What is the Ergodic Theorem?, Amer. Math. Monthly, 49 (1942), 222–226 Birkhoff: Collected Mathematical Papers, Vol. 2, 713–717, Dover, 1968.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    G. D. Birkhoff. Recent Advances in Dynamics, Science, January 16, 1920, Vol. 51 No. 1317 51–55, Birkhoff: Collected Mathematical Papers, Vol. 2, 106–110, Dover, 1968.CrossRefGoogle Scholar
  8. [8]
    J. Bourgain. Pointwise Ergodic Theorems for Arithmetic Sets (Appendix: The Return Time Theorem, Publ. Math. IHES. 69(1989), 5–45.CrossRefzbMATHGoogle Scholar
  9. [9]
    B. O. Koopman. Hamiltonian Systems and Transformations in Hilbert Space, Proc. Nat. Acad. Sci., U. S. A., 17(1931), 315–318.CrossRefzbMATHGoogle Scholar
  10. [10]
    B. O. Koopman and J. von Neumann. Dynamical Systems of Continuous Spectra, Proc. Nat. Acad. Sci., U. S. A., 18 (1932), 255–263, John von Neumann: Collected Works, Vol II, Pergamon Press, 278–286.CrossRefzbMATHGoogle Scholar
  11. [11]
    J. von Neumann. Proof of the Quasi-ergodic Hypothesis, Proc. Nat. Acad. Sci., U. S. A., 18 (1932), 70–82, John von Neumann: Collected Works, Vol. II, Pergamon Press, 261–273.CrossRefzbMATHGoogle Scholar
  12. [12]
    J. von Neumann. Physical Applications of the Ergodic Hypothesis, Proc. Nat. Acad. Sci., 18 (932), 255–263 John von Neumann: Collected Works, Vol. II, Pergamon Press, 274–277.Google Scholar
  13. [13]
    J. von Neumann. Zur operatorenmethode in der Klassi sehen Mechanik, Ann. Math, 33 (1932), 587–642, John von Neumann: Collected Works, Vol. II, Pergamon Press, 307–362.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Rosenblatt and M. Wierdl. Fourier Analysis and Almost Everywhere Convergence, Ergodic Theory and its Connections with Harmonic Analysis, Proceedings of the 1993 Alexandria Conference, Cambridge University Press, 1994.Google Scholar
  15. [15]
    D. Rudolph. A Joining Proof of Bourgain’s Return Time Theorem, Ergodic Theory and Dynamical Systems, Preprint, University of Maryland.Google Scholar
  16. [16]
    N. Wiener. Fourier Integral and Certain of its Applications, Cambridge University Press, 1988.CrossRefzbMATHGoogle Scholar

Copyright information

© Hindustan Book Agency 2013

Authors and Affiliations

  1. 1.University of MumbaiIndia

Personalised recommendations