Skip to main content

Applications of Molecular Dynamics Simulations

  • Chapter
Computational Statistical Physics

Part of the book series: Texts and Readings in Physical Sciences ((TRiPS))

  • 254 Accesses

Abstract

The aim of Molecular Dynamics (MD) simulation is to study a system by recreating it on the computer as close to nature as possible, i.e. by simulating the dynamics of a system in all microscopic detail over a physical length of time relevant to the properties of interest. MD simulation generates very detailed information at the microscopic level and the conversion of this information into macroscopic level is the province of statistical mechanics. Therefore, MD simulations act as a bridge between microscopic length and time scales and the macroscopic world of the laboratory: we provide a guess at the interactions between molecules, and obtain predictions of bulk properties. Simulations act as a bridge also between theory and experiment. We may test a theory by conducting a simulation using the same model. We may test the model by comparing with experimental results. We may also carry out simulations on the computer that are difficult or impossible in the laboratory (for example, working at extremes of temperature or pressure). Finally we may want to make direct comparisons with experimental measurements made on specific materials, in which case a good model of molecular interactions is essential. The aim of so-called ab initio molecular dynamics is to reduce the amount of fitting and guesswork in this process to a minimum. On the other hand, we may be interested in phenomena of a rather generic nature, or we may simply want to discriminate between good and bad theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 55.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).

    MATH  Google Scholar 

  2. M. Karplus and J. Andrew McCammon, Nature Stuctural Biology, 9 (2002) 646;

    Article  Google Scholar 

  3. M. Karplus and G. A. Petsko, Nature, 347 (1990) 631.

    Article  ADS  Google Scholar 

  4. J.-P. Perdew, Y. Wang, Phys. Rev. 45 (1992) 13244.

    Article  Google Scholar 

  5. J. Schiotz, F. D. Di Tolla, K. W. Jacobsen, Nature 391 (1998) 561;

    Article  ADS  Google Scholar 

  6. P. Entel, R. Meyer, K. Kadau, H.C. Herper, E. Hoffmann, Eur. Phys. J. B 5 (1998) 379;

    Article  ADS  Google Scholar 

  7. D. M. Beazley, P. S. Lomdahl, Computers in Physics 11 (1997) 230.

    Article  ADS  Google Scholar 

  8. U. Havemann, A. G. Grivtsov, N. N. Merkulenko, J. Phys. Chem., 99 (1995) 15518;

    Article  Google Scholar 

  9. S.-C. Kim, B.-S. Seong and S.-H. Suh, J. Phys.: Condens. Matter, 21 (2009) 035101; Parallel molecular dynamics simulation of commercial surfactants, Lecture Notes in Computer Science, Volume 796 (Springer Verlag, Berlin, 1994).

    ADS  Google Scholar 

  10. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  11. S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter, Vol. 1 (Clarendon Press, Oxford, 1984).

    Google Scholar 

  12. M. Bee, Quasielastic Neutron Scattering: Principles and Applications in Solid State Chemistry, Biology, and Materials Science (Adam Hilger, Bristol, 1988).

    Google Scholar 

  13. A. Sayeed, S. Mitra, A. V. Anil Kumar, R. Mukhopadhyay, S. Yashonath, and S.L. Chaplot, J. Phys. Chem. B 107 (2003) 527.

    Article  Google Scholar 

  14. R. Mukhopadhyay, A. Sayeed, S. Mitra, A. V. Anil Kumar, Mala N. Rao, S. Yashonath, and S. L. Chaplot, Phys. Rev. E 66 (2002) 061201.

    Article  ADS  Google Scholar 

  15. S. Gautam, S. Mitra, R. Mukhopadhyay and S. L. Chaplot, Phys. Rev. E 74 (2006) 041202.

    Article  ADS  Google Scholar 

  16. S. Gautam, S. Mitra, S. L. Chaplot, and R. Mukhopadhyay, Phys. Rev E 77 (2008) 061201.

    Article  ADS  Google Scholar 

  17. L. van Hove, Phys. Rev. 95 (1954) 249.

    Article  ADS  Google Scholar 

  18. P. Schofield, Phys. Rev. Letters 4(5) (1960) 239.

    Article  ADS  Google Scholar 

  19. G. R. Kneller, J. C. Smith, S. Cusack and W. Doster, J. Chem. Phys., 97 (1992) 8864.

    Article  ADS  Google Scholar 

  20. A. Rahman, K. S. Singwi, and A. Sjölander, Phys. Rev. 126 (1962) 986.

    Article  ADS  Google Scholar 

  21. J.-P. Boon and S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980).

    Google Scholar 

  22. B. Smit and T. L. Maesen, Nature, 451 (2008) 671.

    Article  ADS  Google Scholar 

  23. P. Demontis and G. Suffritti, Chem. Rev. 97 (1997) 2845.

    Article  Google Scholar 

  24. H. Jobic, J. Karger, M. Bee, Phys. Rev. Lett. 82 (1999) 4260.

    Article  ADS  Google Scholar 

  25. A. N. Fitch, H. Jobic, and A. Renouprez, J. Phys. Chem. 90 (1986) 1311.

    Article  Google Scholar 

  26. H. van Koningsveld, H. van Bekkum and J. C. Jansen, Acta Cryst., B43 (1987) 127.

    Article  Google Scholar 

  27. P. K. Ghorai, S. Yashonath, P. Demontis and G. B. Suffritti, J. Am. Chem. Soc., 125 (2003) 7116.

    Article  Google Scholar 

  28. W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106 (1984) 6638.

    Article  Google Scholar 

  29. R. L. June, A. T. Bell, and D. N. Theodorou, J. Phys. Chem. 96 (1992) 1051.

    Article  Google Scholar 

  30. J. I. Siepmann, M. G. Martin, C. Mundy and M. L. Klein, Mol. Phys. 90 (1997) 687.

    Article  ADS  Google Scholar 

  31. S. Gautam, A. K. Tripathi, V. S. Kamble, S. Mitra, and R. Mukhopadhyay, Pramana-J. Phys. 71 (2008) 1153.

    Article  ADS  Google Scholar 

  32. A. E. Ringwood, Composition and petrology of the Earth’s mantle (Mc-Graw Hill, New York 1975).

    Google Scholar 

  33. A. M. Dzeiwonski and D. L. Anderson, Phys. of the Earth and Planetary Interiors, 25 (1981) 297.

    Article  ADS  Google Scholar 

  34. T. S. Duffy and D. L. Anderson, J. of Geophysical Res., 94 (1989) 1895.

    Article  ADS  Google Scholar 

  35. J. P. Poirier, Introduction to the physics of the Earth’s interior (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  36. R. J. Hemley, (Ed.) Ultrahigh Pressure Mineralogy-Physics and Chemistry of the Earth’s Deep Interior (Mineralogical Society of America, Washington D.C. 1998)

    Google Scholar 

  37. R. Jeanloz, High pressure chemistry of the Earth’s mantle and core, in W.R. Peltier, Ed., Mantle Convection: Plate Tectonics and Global Dynamics, (Gordon and Breach, New York. 1986).

    Google Scholar 

  38. R. Jeanloz and A. B. Thompson, Rev. of Geophys. and Sp. Phys., 21 (1983) 51.

    Article  ADS  Google Scholar 

  39. S. L. Chaplot and N. Choudhury, American Mineralogist, 86 (2001) 752.

    Article  ADS  Google Scholar 

  40. S. Ghose, V. Schomaker and R. K. McMullan, Zeits. fur Kristal. 176 (1986) 159;

    ADS  Google Scholar 

  41. N. Funamori and T. Yagi, Geophys. Res. Lett., 20 (1993) 387.

    Article  ADS  Google Scholar 

  42. N. Choudhury, S. Ghose, C. P. Chowdhury, C. K. Loong, and S. L. Chaplot, Phys. Rev. B 58 (1998) 756.

    Article  ADS  Google Scholar 

  43. S. L. Chaplot and S. K. Sikka, Phys. Rev. B 61 (2000) 11205.

    Article  ADS  Google Scholar 

  44. J. Wackerle, J. Appl. Phys. 33 (1962) 922.

    Article  ADS  Google Scholar 

  45. G. R. Fowles, J. Geophys. Res. 72 (1967) 5729.

    Article  ADS  Google Scholar 

  46. L. Pintschovius, S. L. Chaplot, Z. Phys. B 98 (1995) 527;

    Article  ADS  Google Scholar 

  47. S. L. Chaplot, L. Pintschovius, Fullerene Sci. Technol. 3 (1995) 707.

    Article  Google Scholar 

  48. L. Pintschovius, S. L. Chaplot, G. Roth, G. Heger, Phys. Rev. Lett. 75 (1995) 2843;

    Article  ADS  Google Scholar 

  49. L. Pintschovius, S. L. Chaplot, G. Roth, Physica B 219 & 220 (1996) 148;

    Article  ADS  Google Scholar 

  50. S. L. Chaplot, L. Pintschovius, Int. J. Mod. Phys. B 13 (1999) 217;

    Article  ADS  Google Scholar 

  51. S. L. Chaplot, P. S. Schiebel, L. Pintschovius, Fullerene Sei. Technol. 9 (2001) 363.

    Article  Google Scholar 

  52. R. Moret, S. Ravy and S.-M. Godard, J. Phys. I 2 (1992) 1699.

    Google Scholar 

  53. P.C. Chow, X. Jiang, G. Reiter, P. Wochner, S. C. Moss, J. D. Axe, J. C. Hanson, R. K. McMullan, R. L. Meng and C. W. Chu, Phys. Rev. Lett. 69 (1992) 2943;

    Article  ADS  Google Scholar 

  54. P. Schiebel, K. Wulf, W. Prandl, G. Heger, R. Papoular and W. Paulus Acta Cryst. A 52 (1996) 176;

    Article  Google Scholar 

  55. W. I. F. David, R. M. Ibberson and T. Matsuo, Proc. R. Soc. (London) A 442 (1993) 129.

    Article  ADS  Google Scholar 

  56. E. O. Brigham, The Fast Fourier Transform (Prentice Hall, Englewood Cliffs, 1974).

    MATH  Google Scholar 

  57. A. Laaksonen, P.G. Kusalik, I. M. Svishchev, J. Phys. Chem. A 101 (1997) 5910.

    Article  Google Scholar 

  58. P. G. Kusalik, I. M. Svishchev, Science, 265 (1994) 1219;

    Article  ADS  Google Scholar 

  59. P. G. Kusalik, I. M. Svishchev, J. Chem. Phys., 99 (1993) 3049.

    Article  ADS  Google Scholar 

  60. K. Kulinska, T. Kulinski, A. Lyubartsev, A. Laaksonen and R. W. Adamiak, Computers and Chemistry, 24 (2000) 451.

    Article  Google Scholar 

  61. A. Vishnyakov, A. Laaksonen, and G. Widmalm, J. Mol. Graphics Modell., 19 (2001) 338.

    Article  Google Scholar 

Download references

Authors

Editor information

Sitangshu Bikas Santra Purusattam Ray

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Hindustan Book Agency

About this chapter

Cite this chapter

Mitra, S., Chaplot, S.L. (2011). Applications of Molecular Dynamics Simulations. In: Santra, S.B., Ray, P. (eds) Computational Statistical Physics. Texts and Readings in Physical Sciences. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-50-7_7

Download citation

Publish with us

Policies and ethics