Skip to main content

Classical Monte Carlo Simulation

  • Chapter
Computational Statistical Physics

Part of the book series: Texts and Readings in Physical Sciences ((TRiPS))

  • 256 Accesses

Abstract

In Monte Carlo simulation, our primary goal is to calculate an observable physical quantity X of a thermodynamic system in thermal equilibrium with a heat bath at temperature T. A macroscopic thermodynamic system consists of a large number of atoms or molecules, of the order of Avogadro number N A ≈ 6.022 × 1023 per mole. Moreover, in most general cases, the particles have complex interaction among themselves. The average property of a physical quantity of such a system is then determined not only by the large number of particles but also by the complex interaction among the particles. As per statistical mechanics, if the system is in thermal equilibrium with a heat bath at temperature T, the average of an observable quantity 〈X〉 can be calculated by evaluating the canonical partition function Z of the system and is given by \(\langle X\rangle = \frac{1}{Z}\mathop \sum \limits_s {X_s}exp( - {E_s}/{k_B}T)\) where k B is the Boltzmann constant. However, the difficulty in evaluating the exact partition function Z is two fold. First, there are large number of particles present in the system with many degrees of freedom. The calculation of the partition function Z usually leads to evaluation of an infinite series or an integral in higher dimension, a (6N) dimensional space. Second, there exists a complex interaction among the particles which gives rise to unexpected features in the macroscopic behaviour of the system. Monte Carlo (MC) simulation method can be employed in evaluating such averages. In a MC simulation, a reasonable number of states are generated randomly (instead of infinitely large number of all possible states) with their right Boltzmann weight and an average of a physical property is taken over those states only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 55.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Atlee Jacson, Equilibrium statistical Mechanics, (Dover Publications, Inc., Mineola, New York, 1968).

    Google Scholar 

  2. R. Y. Rubinstein and D. P. Kroese, Simulation and Monte Carlo Method, (John Wiley & Sons, Inc., Hoboken, New Jersey, 2008).

    MATH  Google Scholar 

  3. D. P. Landau and K. Binder, A Guide to Monte Carlo simulations in Statistical Physics, (Cambridge university Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  4. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, (Clarendon Press, Oxford, 2001).

    MATH  Google Scholar 

  5. W. H. Press, S. A. Teukolsky, W. T. Vellerling, B. P. Flannery, Numerical Recipes, (Cambridge university Press, Cambridge, 1998).

    Google Scholar 

  6. S. S. M. Wong, Computational Methods in Physics and Engineering, (World Scientific, Singapore, 1997).

    Book  MATH  Google Scholar 

  7. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  8. D. Frenkel and B. Smit, Understanding Molecular Simulation, (Academic Press, San Diego, 2002).

    MATH  Google Scholar 

  9. K. P. N. Murthy, Monte Carlo Methods in Statistical Physics, University Press, Hyderabad (2004).

    Google Scholar 

  10. D. Ben-Avraham and S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems, (Cambridge University Press, UK, 2000).

    Book  MATH  Google Scholar 

  11. S. R. White and M. Barma, J. Phys. A: 17, 2995 (1984).

    Article  ADS  Google Scholar 

  12. D. S. McKenzie, Phys. Rep. 27, 35 (1976);

    Article  ADS  Google Scholar 

  13. A. J. Guttmann, in Phase Trensition and Critical Phenomena, vol.13, Edited by C. Domb and J. L. Lebowitz, (Academic Press, London, 1989);

    Google Scholar 

  14. K. Barat and B. K. Chakrabarti, Phys. Rep. 258, 377 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Stauffer and A. Aharony, Introduction to Percolation Theory, (Taylor and Francis, London, 2nd edition, 1994).

    MATH  Google Scholar 

  16. A. Bunde and S. Havlin, Fractals and Disordered Systems, (Springer-Verlag, Berlin, 1991).

    Book  MATH  Google Scholar 

  17. N. R. Moloney and K. Christensen, Complexity and Criticality, (Imperial College Press, 2005).

    MATH  Google Scholar 

  18. B. BollobĂĄs and O. Riordan, Percolation, (Cambridge University Press, 2006).

    Book  MATH  Google Scholar 

  19. G. R. Grimmett, Percolation, (Springer-Verlag, New York, 1999).

    Book  MATH  Google Scholar 

  20. J. Feder, Fractals, (Plenum Press and New York and London, 1998).

    MATH  Google Scholar 

  21. J. F. Gouyet, Physics and Fractal Structures, (Springer-Verlag, Berlin, New York, 1996).

    MATH  Google Scholar 

  22. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).

    Article  ADS  Google Scholar 

  23. D. Stauffer, Phys. Rep. 54, 1 (1979);

    Article  ADS  Google Scholar 

  24. M. P. M. den Nijs, J. Phys. A 12, 1857 (1997);

    Google Scholar 

  25. B. Nienhuis, J. Phys. A 15, 199 (1982);

    ADS  MathSciNet  Google Scholar 

  26. R. M. Ziff and B. Sapoval, J. Phys. A 19, L1169 (1987).

    ADS  Google Scholar 

  27. R. Zallen, The Physics of Amorphous Solids, (Wiley, New York, 1983);

    Book  Google Scholar 

  28. M. Sahimi, Applications of Percolation Theory, (Taylor and Francis, London, 1994).

    Google Scholar 

  29. S. P. Obukhov, Physica A 101, 145 (1980);

    Article  MathSciNet  Google Scholar 

  30. H. Hinrichsen, Brazilian Journal of Physics 30, 69 (2000).

    Article  ADS  Google Scholar 

  31. J. K. Williams and N. D. Mackenzie, J. Phys. A: Math. Gen. 17, 3343 (1984);

    Article  ADS  Google Scholar 

  32. J. W. Essam, A. J. Guttmann and K. DĂŠBell, J. Phys. A: Math. Gen. 21, 3815 (1988);

    Article  ADS  Google Scholar 

  33. J. W. Essam, K. DĂŠBell, J. Adler and F. M. Bhatti, Phys. Rev. B 33, 1982 (1986);

    Article  ADS  Google Scholar 

  34. W. Kinzel and J. M. Yeomans, J. Phys. A: Math. Gen. 14, L163 (1981);

    Article  ADS  Google Scholar 

  35. K. DĂŠBell and J. W. Essam, J. Phys. A: Math. Gen. 16, 385 (1983);

    Article  ADS  Google Scholar 

  36. B. Hede, J. KertĂŠsz and T. Vicsek, J. Stat. Phys. 64, 829 (1991).

    Article  ADS  Google Scholar 

  37. H. Hinrichsen, Adv. Phys. 49, 815 (2000).

    Article  ADS  Google Scholar 

  38. P. Ray and I. Bose, J. Phys. A 21, 555 (1988);

    ADS  MathSciNet  Google Scholar 

  39. S. B. Santra and I. Bose, J. Phys. A 24, 2367 (1991).

    ADS  Google Scholar 

  40. S. B. Santra and I. Bose, J. Phys. A 25, 1105 (1992).

    ADS  MathSciNet  Google Scholar 

  41. S. B. Santra and I. Bose, Z. Phys. B 89, 247 (1992);

    Article  Google Scholar 

  42. S. B. Santra, A. Paterson and S. Roux, Phys. Rev. E 53, 3867 (1996);

    ADS  Google Scholar 

  43. S. B. Santra and W. A. Seitz, Int. J. Mod. Phys. C 11, 1357 (2000).

    Article  ADS  Google Scholar 

  44. S. B. Santra, Eur. Phys. J. B 33, 75 (2003); Int. J. Mod. Phys. B 17, 5555 (2003);

    Article  ADS  Google Scholar 

  45. S. Sinha and S. B. Santra, Eur. Phys. J. B 39, 513 (2004).

    Article  ADS  Google Scholar 

  46. K. Binder (Edt.), The Monte Carlo Method in Condensed Matter Physics, (Springer-Verlag, Heidelberg, 1992).

    Google Scholar 

  47. V. Privman (Edt.), Finite Size Scaling and Numerical Simulation of Statistical Systems, World Scientific, Singapore (1990).

    Google Scholar 

  48. K. Binder, Z. Phys. B 43, 119 (1981).

    Article  Google Scholar 

  49. K. Binder, Rep. Prog. Phys. 50, 783 (1987).

    Article  ADS  Google Scholar 

  50. K. Binder and D. P. Landau, Phys. Rev. B 30, 1477 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  51. M. S. S. Challa, D. P. Landau and K. Binder, Phys. Rev. B 34, 1841 (1986).

    Article  ADS  Google Scholar 

  52. J. J. Binney et. al., The Theory of Critical Phenomena, Oxford niversity Press, Oxford, (1992).

    MATH  Google Scholar 

  53. O. Narayan and A. P. Young, Phys. Rev. E 64, 021104 (2001).

    ADS  Google Scholar 

  54. R. H. Swendsen and J. S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  55. M. De Meo, M. D’Onorio, D. Heermann and K. Binder, J. Stat. Phys. 60, 585 (1990).

    Article  ADS  Google Scholar 

  56. U. Wolff, Nucl. Phys. B 300, 501 (1988).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Sitangshu Bikas Santra Purusattam Ray

Rights and permissions

Reprints and permissions

Copyright information

Š 2011 Hindustan Book Agency

About this chapter

Cite this chapter

Santra, S.B., Ray, P. (2011). Classical Monte Carlo Simulation. In: Santra, S.B., Ray, P. (eds) Computational Statistical Physics. Texts and Readings in Physical Sciences. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-50-7_4

Download citation

Publish with us

Policies and ethics