Skip to main content

A Geometric Framework for the Subfield Problem of Generic Polynomials Via Tschirnhausen Transformation

  • Chapter
Number Theory and Applications

Abstract

Let k be an arbitrary field. We study a general method to solve the subfield problem of generic polynomials for the symmetric groups over k via Tschirnhausen transformation. Based on the general result in the former part, we give an explicit solution to the field isomorphism problem and the subfield problem of cubic generic polynomials for \( \mathfrak{S} \)3 and C3 over k. As an application of the cubic case, we also give several sextic generic polynomials over k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 52.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. R. Berlekamp, An analog to the discriminant over fields of characteristic two, J. Algebra 38 (1976), 315–317.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. A. Bruen, C. U. Jensen, N. Yui, Polynomials with Frobenius groups of prime degree as Galois Groups II, J. Number Theory 24 (1986), 305–359.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Buhler, Z. Reichstein, On the essential dimension of a finite group, Compositio Math. 106 (rd), 159–179.

    Google Scholar 

  4. R. J. Chapman, Automorphism polynomials in cyclic cubic extensions, J. Number Theory 61 (1996), 283–291.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Chu, S. Hu, M. Kang, J. Zhang, Groups with essential dimension one, preprint. arXiv:math/0611917vl [math.AG].

    Google Scholar 

  6. H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993.

    Book  MATH  Google Scholar 

  7. K. Hashimoto, A. Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp. 74 (2005), 1519–1530.

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Hashimoto, A. Hoshi, Geometric generalization of Gaussian period relations with application to Noether’s problem for meta-cyclic groups, Tokyo J. Math. 28 (2005), 13–32.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Hashimoto, K. Miyake, Inverse Galois problem for dihedral groups, Number theory and its applications, Dev. Math., 2, Doredrecht: Kluwer Acad. Publ. 165–181, 1999.

    MathSciNet  MATH  Google Scholar 

  10. M. Hindry, J. H. Silverman, Diophantine geometry. An introduction, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000.

    Book  MATH  Google Scholar 

  11. A. Hoshi, K. Miyake, Tschirnhausen transformation of a cubic generic polynomial and a 2-dimensional involutive Cremona transformation, Proc. Japan Acad., Series A 83 (2007), 21–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Huppert, Endliche Gruppen. I., Grundlehren der Mathematischen Wissenschaften 134, Springer-Verlag, Berlin-New York 1967.

    Book  MATH  Google Scholar 

  13. C. Jensen, A. Ledet, N. Yui, Generic polynomials, constructive aspects of the inverse Galois problem, Mathematical Sciences Research Institute Publications, Cambridge, 2002.

    MATH  Google Scholar 

  14. G. Kemper, A constructive approach to Noether’s problem, Manuscripta Math. 90 (1996), 343–363.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Kemper, Generic polynomials are descent-generic, Manuscripta Math. 105 (2001), 139–141.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Kemper, E. Mattig, Generic polynomials with few parameters, J. Symbolic Comput. 30 (2000), 843–857.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kida, Kummer theory for norm algebraic tori, J. Algebra 293 (2005), 427–447.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kida, Cyclic polynomials arising from Kummer theory of norm algebraic tori, Algorithmic number theory, Lecture Notes in Comput. Sci., 4076, Springer, Berlin, 102–113, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Komatsu, Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory, Manuscripta math. 114 (2004), 265–279.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Komatsu, Generic sextic polynomial related to the subfield problem of a cubic polynomial, preprint. http://www.math.kyushu-u.ac.jp/coe/report/pdf/2006–9.pdf

  21. S. Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften 231, Springer, 1978.

    Book  MATH  Google Scholar 

  22. S. Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  23. A. Ledet, On groups with essential dimension one, J. Algebra, 311 (2007), 31–37.

    Article  MathSciNet  MATH  Google Scholar 

  24. K. Miyake, Linear fractional transformations and cyclic polynomials, Algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. (Pusan) 1 (1999), 137–142.

    MathSciNet  MATH  Google Scholar 

  25. K. Miyake, Some families of Mordell curves associated to cubic fields, J. Comput. Appl. Math. 160 (2003), 217–231.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Miyake, An introduction to elliptic curves and their Diophantine geometry—Mordell curves, Ann. Sci. Math. Québec 28 (2004), 165–178.

    MathSciNet  MATH  Google Scholar 

  27. K. Miyake, Cubic fields and Mordell curves, Number theory, 175–183, Dev. Math., 15, Springer, New York, 2006.

    MathSciNet  MATH  Google Scholar 

  28. P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), 183–208.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Wolfram, The Mathematica Book, Fifth Edition, Wolfram Media, Inc., Cambridge University Press, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Hindustan Book Agency

About this chapter

Cite this chapter

Hoshi, A., Miyake, K. (2009). A Geometric Framework for the Subfield Problem of Generic Polynomials Via Tschirnhausen Transformation. In: Adhikari, S.D., Ramakrishnan, B. (eds) Number Theory and Applications. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-46-0_7

Download citation

Publish with us

Policies and ethics