Skip to main content

The C* Axioms and the Phase Space Fomalism of Quantum Mechanics

  • Chapter
Contributions in Mathematical Physics

Abstract

In 1972, “Algebraic Methods in Statistical Mechanics and Quantum Field Theory” was published by Gerard Emch [8], giving the axioms for a physical system in an algebraic setting using the language of Irving Segal [19], and then continuing to obtain the C*-algebraic formalism for a physical system. Of these axioms, only the fifth contained an assumption that was questionable in its physical content. Bearing in mind that for each observable A and state φ, one obtains a distribution of values for the observed results of measurement, we have:

Axiom 5: For any element A in the set of observables \(\mathfrak{A}\) and any non-negative integer n, there is at least one element, denoted An, in \(\mathfrak{A}\) such that (i) the set of dispersion-free states for An is contained in the set of dispersion-free states for A, (ii) < φ; An > = < φ; A >n for all φ in the set of dispersion-free states for A. (Here < φ; B > is the expectation of B in state φ.)

It is proven that the phase space localization operators on the Hilbert spaces of ordinary quantum mechanics provide a set of operators that are physically motivated and form a C* algebra. Then, it is proven that the set of localization operators, when extended, are informationally complete in the original Hilbert spaces.

Dedicated to G. G. Emch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 42.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, S. T., Brooke, J. A., Busch, P., Gagnon, R., Schroeck, Jr., F. E., Can. J. Physics 66 (1988), 238–244.

    Article  Google Scholar 

  2. Ali, S. T. and Progovecki, E., Acta Appl. Math. 6 (1986), 19–45; 6 (1986) 47–62.

    Article  MathSciNet  Google Scholar 

  3. Brooke, J. A., Schroeck, Jr., F. E., Nuclear Physics B (Proc. Suppl.) 6 (1989), 104–106.

    Article  MathSciNet  Google Scholar 

  4. Brooke, J. A., Schroeck, Jr., F. E., J. Math. Phys.37 (1996), 5958–5986.

    Article  MathSciNet  Google Scholar 

  5. Brooke, J. A., Schroeck, Jr., F. E., Phase Space Representations of Relativistic Massive Spinning Particles, in preparation.

    Google Scholar 

  6. Brooke, J. A., Schroeck, Jr., F. E., “Perspectives: Quantum Mechanics on Phase Space”, International Journal of Theoretical Physics 44 (2005), 1894–1902.

    Article  MathSciNet  MATH  Google Scholar 

  7. Busch, P., Int. J. Theor. Phys. 30 (1991), 1217–1227.

    Article  Google Scholar 

  8. Emch, G. G., Algebraic Methods in Statistical Mechanics and Quantum Field Theory, John Wiley and Sons, Inc., 1972.

    MATH  Google Scholar 

  9. Gelfand, I., and Naimark, M. A., Mt. Sborn., N. S. 12 [54] (1943), 197–217.

    Google Scholar 

  10. Guillemin, V., and Sternberg, S., Symplectic Techniques in Physics, Cambridge Univ. Press, 1991.

    MATH  Google Scholar 

  11. Healy, Jr., D. M. and Schroeck, Jr., F. E., J. Math. Phys. 36 (1995), 433–507.

    Article  Google Scholar 

  12. Lévy-Leblond, J.-M., J. Math. Phys. 4 (1963), 776 – 788.

    Article  Google Scholar 

  13. Mackey, G. W., Ann. Math. 55 (1952), 101–139; 58 (1953), 193–221.

    Article  MathSciNet  Google Scholar 

  14. Michaelson, A. A., and Morley, E. W., American J. of Science XXXI (May, 1886), 377–386; XXXIV (1887), 338–339.

    Article  Google Scholar 

  15. Prugovecki, E., Int. J. Theor. Physics 16 (1977), 321–331.

    Article  Google Scholar 

  16. Schroeck, F.E., Jr., Quantum Mechanics on Phase Space, Kluwer Academic Publishers, 1996.

    Book  MATH  Google Scholar 

  17. Schroeck, F.E., Jr., Int. J. Theor. Phys. 28 (1989), 247–262.

    Article  Google Scholar 

  18. Schroeck, F.E., Jr., Int. J. Theor. Phys., 44 (2005), 2091–2100.

    Article  MathSciNet  Google Scholar 

  19. Segal, I. E., Ann. Math. 48 (1947), 930–948.

    Article  MathSciNet  Google Scholar 

  20. Souriau, J.-M., Structure des systèmes dynamiques, Dunod, Paris; translation: Structure of Dynamical Systems, Prog. Math. 149, Birkhäuser, Boston, 1997.

    Google Scholar 

  21. von Neumann, J., Chrakterisierung des Spektrums eines Integraloperators, Act. Sci. et Ind., Paris, 229 (1935), 11.

    Google Scholar 

  22. Weyl, H., “Überbeschränkte quadratische Formen, deren Differenz Vollstetig ist”, Rend. Circ. Mat. Palermo 27 (1909), 373 – 392.

    Article  MATH  Google Scholar 

  23. Wigner, E. P., Ann. Math. 40 (1939), 149–204.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Hindustan Book Agency

About this chapter

Cite this chapter

Schroeck, F.E. (2007). The C* Axioms and the Phase Space Fomalism of Quantum Mechanics. In: Ali, S.T., Sinha, K.B. (eds) Contributions in Mathematical Physics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-33-0_9

Download citation

Publish with us

Policies and ethics