Adaptive Dynamics and its Application to Chaos



The adaptive dynamics has two aspects, one of which is the “observable-adaptivity” and another is the “state-adaptivity”.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Accardi, Urne e Camaleoni: Dialogo sulla realta, le leggi del caso e la teoria quantistica. Il Saggiatore, Rome (1997)Google Scholar
  2. [2]
    L.Accardi, K.Imafuku, M.Refoli, On the EPR-Chameleon experiment, Infinite Dimensional Analysis, Quantum Probability and Related Topics Vol. 5, No. 1 (2002) 1–2MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    L.Accardi, M.Ohya, A Stochastic limit approach to the SAT problem”, Proceedings of VLSI 2003, and Open systems and Information Dynamics (2004)zbMATHGoogle Scholar
  4. [4]
    L.Accardi, M.Ohya, Compound channels, transition expectations, and liftings”, Appl. Math. Optim., Vol.39, 33–59 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L.Accardi, M.Ohya, N. Watanabe, Note on quantum dynamical entropies Reports on mathematical physics, vol.38 n.3 457–469 (1996)CrossRefGoogle Scholar
  6. [6]
    H.Araki, Relative entropy of states of von Neumann Algebras, Publ.RIMS, Kyoto Univ. Vol.11, 809–833 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L.Accardi, R.Sabbadini, On the Ohya-Masuda quantum SAT Algorithm, in: Proceedings International Conference UMC’01, Springer (2001)Google Scholar
  8. [8]
    K.T.Alligood, T.D.Sauer, J.A.Yorke, Chaos-An Introduction to Dynamical Systems-, Textbooks in Mathematical Sciences, Springer (1996)zbMATHGoogle Scholar
  9. [9]
    R. Alicki, Quantum geometry of noncommutative Bernoulli shifts, Banach Center Publications, Mathematics Subject Classification 46L87 (1991)Google Scholar
  10. [10]
    R. Alicki, M. Fannes, Defining quantum dynamical entropy, Lett. Math. Physics, 32, 75–82 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    F. Benatti, Deterministic Chaos in Infinite Quantum Systems, Springer (1993)CrossRefGoogle Scholar
  12. [12]
    A. Connes, H. Narnhofer, W. Thirring, Dynamical entropy of C*-algebras and von Neumann algebras, Commun.Math.Phys., 112, pp.691–719 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    R.L. Devaney, An Introduction to Chaotic dynamical Systems, Benjamin (1986)zbMATHGoogle Scholar
  14. [14]
    G.G. Emch, H. Narnhofer, W. Thirring and G.L. Sewell, Anosov actions on noncommutative algebras, J.Math.Phys., 35, No. 11, 5582–5599 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley (1972)zbMATHGoogle Scholar
  16. [16]
    K. Inoue, M. Ohya, I.V. Volovich, Semiclassical properties and chaos degree for the quantum baker’s map, J. Math. Phys., 43–2, 734–755 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Inoue, M. Ohya, I.V. Volovich, On quantum-classical correspondence for baker’s map, quant-ph/0108107(2001)zbMATHGoogle Scholar
  18. [18]
    K. Inoue, M. Ohya and K. Sato, Application of chaos degree to some dynamical systems, Chaos, Soliton & Fractals, 11, 1377–1385 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R.S. Ingarden, A. Kossakowski, M. Ohya, Information Dynamics and Open Systems, Kluwer Publ. Comp. (1997)CrossRefzbMATHGoogle Scholar
  20. [20]
    K. Inoue, M. Ohya, A. Kossakowski, A Description of Quantum Chaos, Tokyo Univ. of Science preprint (2002)Google Scholar
  21. [21]
    A. Kossakowski, M. Ohya, Y. Togawa, How can we observe and describe chaos? Open System and Information Dynamics, 10(3):221–233 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A. Kossakowski, M. Ohya, N. Watanabe, Quantum dynamical entropy for completely positive maps, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2, No.2, 267–282 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    N. Muraki, M. Ohya, Entropy functionals of Kolmogorov-Sinai type and their limit theorems, Letter in Mathematical Physics, 36, 327–335 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    M. Ohya, D. Petz, Quantum Entropy and its Use, Springer-Verlag (1993)CrossRefzbMATHGoogle Scholar
  25. [25]
    M. Ohya, On compound state and mutual information in quantum information theory, IEEE Trans. Information Theory, 29, No.5, 770–774 (1983)CrossRefzbMATHGoogle Scholar
  26. [26]
    M. Ohya, Some aspects of quantum information theory and their applications to irreversible processes, Rep.Math.Phys., Vol.27, 19–47 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    M. Ohya, Complexities and their applications to characterization of chaos, International Journal of Theoretical Physics,Vol.37, No.1, 495–505 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    M. Ohya, State change, complexity and fractal in quantum systems, Quantum Communications and Measurement, Plenum Press, New York, 309–320 (1995)zbMATHGoogle Scholar
  29. [29]
    M. Ohya, Complexity and fractal dimensions for quantum states, Open Systems and Information Dynamics, 4, 141–157 (1997)CrossRefzbMATHGoogle Scholar
  30. [30]
    M.Ohya, et al, Adaptive dynamics its use in understanding of chaos, TUS preprintGoogle Scholar
  31. [31]
    M. Ohya, Information dynamics and its applications to optical communication processes, Lecture Note in Physics, 378, 81–92 (1991)MathSciNetCrossRefGoogle Scholar
  32. [32]
    M. Ohya, Entropy Transmission in C*-dynamical systems, J.Math. Anal. Appl., 100, No. 1, 222–235 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. Ohya, N. Masuda, NP problem in quantum algorithm, Open Systems and Information Dynamics, Vol.7, No.1, 33–39 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    M. Ohya, I.V. Volovich, New quantum algorithm for studying NP-complete problems, Rep.Math.Phys., 52, No. 1, 25–33 (2003) and Quantum computing and chaotic amplifier, J.Opt.B (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    M.Ohya, I.V.Volovich, Mathematical Foundations of Quantum Information and Quantum Computation, to be published in Springer-VerlagGoogle Scholar
  36. [36]
    A. Uhlmann, The ‘transition probability’ in the state space of a*-algebra.Rep.Math.Phys., 9:273–279 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    H. Umegaki, Conditional expectation in operator algebra IV, Kodai Math. Sem. Rep., 14, 59–85 (1962)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Hindustan Book Agency 2007

Authors and Affiliations

  1. 1.Tokyo University of ScienceChibaJapan

Personalised recommendations