Advertisement

Thoughts about Anomalous Diffusion: Time-Dependent Coefficients versus Memory Functions

Chapter

Abstract

Electrons and holes in a semiconducting device [1], interstitial atoms injected into a solid [2], molecules in a gas container, ink droplets in a glass of liquid, mice carrying the deadly Hantavirus over a landscape [3], all of these entities engage in a common activity: they diffuse. The study of diffusion has, therefore, been fundamental, important, and active in diverse disciplines. Famous thinkers who have made primary and oft-used contributions to such a study include not only the physicist Einstein [4] but the financial expert Bachelier [5], the former in his research on Brownian motion, the latter during his investigations of markets and stock movements. In the present manuscript, the authors report thoughts and calculations regarding two manners of the generalization of the fundamental process of diffusion. Such generalization becomes necessary when the mechanism of motion is more complex than in normal diffusion and may involve coherence, spatial restrictions, trapping, and similar features.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.M. Conwell, High Field Transport in Semiconductors, (Academic Press, New York, 1967).Google Scholar
  2. [2]
    V.M. Kenkre, Ceramic Transactions 21, 69 (1991); see alsoGoogle Scholar
  3. V.M. Kenkre, L. Skala, M. Weiser, J.D. Katz, J. Materials Science 26, 2483 (1991).CrossRefGoogle Scholar
  4. [3]
    L. Giuggioli, G. Abramson, V.M. Kenkre, C. Parmenter, T. Yates, J. Theoretical Biology 240, 126–135, (2006); see alsoMathSciNetCrossRefGoogle Scholar
  5. V.M. Kenkre, Physica A, 356, 121–126 (2005).CrossRefGoogle Scholar
  6. [4]
    A. Einstein, Ann. Physik 17, 549 (1905).CrossRefGoogle Scholar
  7. [5]
    L. Bachelier, Annales Scientifiques de l’École Normale Superieure 17, 21 (1900).CrossRefGoogle Scholar
  8. [6]
    See, e.g., P. Martin and G. G. Emch, Helv. Phys. Acta 48, 59 (1975).MathSciNetGoogle Scholar
  9. [7]
    V. M. Kenkre in Statistical Mechanics and Statistical Methods in Theory and Application ed. U. Landman (New York, Plenum, September 1977), pp. 441–461.CrossRefGoogle Scholar
  10. [8]
    V. M. Kenkre, Granular Matter 3, 23–28 (2001).CrossRefGoogle Scholar
  11. [9]
    V M. Kenkre in ÒThe Granular StateÓ, MRS Symp. Proc. Vol. 627, eds. S.Sen and M.L.Hunt (MRS, Warrendale, PA 2000), pp. BB 6.5.1 – 6.5.8.; see also M. Kuś and V. M. Kenkre, unpublished results.Google Scholar
  12. [10]
    B.B. Mandelbrot and J.W. Van Ness, SIAM Rev. 10, 422 (1968).MathSciNetCrossRefGoogle Scholar
  13. [11]
    V.M. Kenkre, Exciton Dynamics in Molecular Crystals and Aggregates: the Master Equation Approach, Springer Tracts in Modern Physics, Vol. 94, ed. G. Hoehler (Springer, Berlin, 1982).Google Scholar
  14. [12]
    See, e.g., R. W. Zwanzig, in Lectures in Theoretical Physics ed. W. E. Downs and J. Downs (Interscience, Boulder, Colo. 1961), vol. III; see also Physica 30, 1109 (1964).Google Scholar
  15. [13]
    V.M. Kenkre, E.W. Montroll, M.F. Shlesinger, J. Stat. Phys. 9, 45 (1973);CrossRefGoogle Scholar
  16. V.M. Kenkre, R.S. Knox, Phys. Rev. B9, 5279 (1974).CrossRefGoogle Scholar
  17. [14]
    E.W. Montroll and G.H. Weiss, J. Math. Phys. 6, 167 (1965);CrossRefGoogle Scholar
  18. E. Montroll and H. Scher, J. Stat. Phys. 9, 101 (1973).CrossRefGoogle Scholar
  19. [15]
    H. Haken and P. Reineker, Z. Phys. 249, 253 (1972);CrossRefGoogle Scholar
  20. M.K. Grover and R. Silbey, J. Chem. Phys. 54, 4843 (1971).CrossRefGoogle Scholar
  21. [16]
    V.M. Kenkre, R.S. Knox, Phys. Rev. B9, 5279 (1974).CrossRefGoogle Scholar
  22. [17]
    M. Abramowitz and I.A. Stegun, Handbook of mathematical functions (Dover N.Y. 1972).zbMATHGoogle Scholar
  23. [18]
    V.M. Kenkre, Phys. Rev. A 16, 766 (1977).CrossRefGoogle Scholar
  24. [19]
    M.D. Fayer, Phys. Rev. Lett. 41, 131 (1978).CrossRefGoogle Scholar
  25. [20]
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy, Oxford Univ, Press, New York (1991).Google Scholar
  26. [21]
    F.J. Sevilla and V.M. Kenkre, J. Phys. Condens. Matter 18, 1–14 (2006).CrossRefGoogle Scholar
  27. [22]
    E.O. Stejskal, and J.E. Tanner, J Chem. Phys. 42, 288 (1965);CrossRefGoogle Scholar
  28. E.O. Stejskal, J Chem. Phys. 43, 3595 (1965);CrossRefGoogle Scholar
  29. E.O. Stejskal, and J.E. Tanner, J Chem. Phys. 49, 1768 (1968).CrossRefGoogle Scholar

Copyright information

© Hindustan Book Agency 2007

Authors and Affiliations

  1. 1.Consortium of the Americas for Interdisciplinary Science and Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations