Skip to main content
  • 290 Accesses

Abstract

Quantum field theory is the study of quantum systems with an infinite number of degrees of freedom. The simplest quantum field theories are the free bose fields, which are essentially assemblies of an infinite number of coupled oscillators. Examples include the quantized electromagnetic field, lattice vibrations in solid state physics, and the Klein-Gordon field, some of which are relativistic while others are not. Particles show up in quantum field theory as “field quanta.” As we will see, these do not quite have all the properties of the usual particles of Newtonian physics or of Schrödinger quantum mechanics. I will in particular show (Section 3) that the quanta of free bose fields, relativistic or not, can not be perfectly localized in a bounded subset of space. This, in my opinion, shows conclusively that the difficulties encountered when attempting to define a position observable for the field quanta of relativistic fields, that continue to be the source of regular debate in the literature [20] [21] [22] [3] [10] [15] [18] [19] [48] [47], do not find their origin in any form of causality violation, as seems to be generally thought. Instead, they result from an understandable but ill-fated attempt to force too stringent a particle interpretation on the states of the quantum field containing a finite number of quanta.

The nature and properties of the vacuum as well as the meaning and localization properties of one or many particle states have attracted a fair amount of attention and stirred up sometimes heated debate in relativistic quantum field theory over the years. I will review some of the literature on the subject and will then show that these issues arise just as well in non-relativistic theories of extended systems, such as free bose fields. I will argue they should as such not have given rise either to surprise or to controversy. They are in fact the result of the misinterpretation of the vacuum as “empty space” and of a too stringent interpretation of field quanta as point particles. I will in particular present a generalization of an apparently little known theorem of Knight on the non-localizability of field quanta, Licht’s characterization of localized excitations of the vacuum, and explain how the physical consequences of the Reeh-Schlieder theorem on the cyclicity and separability of the vacuum for local observables are already perfectly familiar from non-relativistic systems of coupled oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 42.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Amrein. Localizability for particles of mass zero. Helv. Phys. Acta, 42:149–190, 1969.

    MATH  Google Scholar 

  2. H. Bacry. Localizability and space in quantum physics. Lecture Notes in Physics 308, Springer Verlag. 1988.

    Book  MATH  Google Scholar 

  3. I. Bialynicki-Birula. Exponential localization of photons. Phys. Rev. Lett., 80(24):5247–5250, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. D. Björken and S. D. Drell. Relativistic quantum fields. Mc. Graw Hill, NY. 1965.

    MATH  Google Scholar 

  5. S. De Bièvre. Classical and quantum harmonic systems (in preparation).

    Google Scholar 

  6. S. De Bièvre. Causality and localization in relativistic quantum mechanics. In Proceedings “Trobades Cientifiques de la Mediterrania”, pages 234–241. 1985.

    Google Scholar 

  7. S. De Bièvre. Local states of free bose fields. In Large Coulomb Systems, volume 695 of Lecture Notes in Physics, pages 17–63. 2006.

    Google Scholar 

  8. V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii. Relativistic quantum theory. Pergamon Press, Oxford. 1971.

    Google Scholar 

  9. N. N. Bogoliubov and D.V. Shirkov. Quantum fields. The Benjamin/Cummings Publishing Company Inc. 1983.

    MATH  Google Scholar 

  10. D. Buchholz and J. Yngvason. There are no causality problems for fermi’s two-atom system. Physical Review Letters 5, 73:613–616, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.J. Chang. Introduction to quantum field theory. World Scientific. 1990.

    Book  Google Scholar 

  12. J.P. Dereudinger. Theorie quantique des champs. Presses Polytechniques et Universitaires Romandes. 2001.

    Google Scholar 

  13. W. Driessler. Comments on lightlike translations and applications in relativistic quantum field theory. Commun. Math. Phys., 44(2): 133–141, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Emch. Algebraic methods in statistical mechanics and quantum field theory. Wiley Interscience, 1972.

    MATH  Google Scholar 

  15. G. Fleming and J. Butterfield. Strange positions. In From physics to philosophy, pages 108–165. Cambridge University Press, 1999.

    Chapter  Google Scholar 

  16. W. Greiner. Relativistic quantum mechanics. Springer. 1990.

    Book  MATH  Google Scholar 

  17. R. Haag. Local quantum physics. Springer. 1996.

    Book  MATH  Google Scholar 

  18. Hans Halvorson. Reeh-Schlieder defeats Newton-Wigner: on alternative localization schemes in relativistic quantum field theory. Philos. Sci., 68(1):111–133, 2001.

    Article  MathSciNet  Google Scholar 

  19. Hans Halvorson and Rob Clifton. No place for particles in relativistic quantum theories? Philos. Sci., 69(1):1–28, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. C. Hegerfeldt. Remark on causality and particle localization. Phys. Rev. D, 10(10):3320–3321, 1974.

    Article  Google Scholar 

  21. G. C. Hegerfeldt. Violation of causality in relativistic quantum theory? Phys. Rev. Letters, 54(22):2395–2398, 1985.

    Article  MathSciNet  Google Scholar 

  22. G. C. Hegerfeldt. Causality, particle localization and positivity of the energy. In Irreversibility and causality (Goslar, 1996), volume 504 of Lecture Notes in Phys., pages 238–245. Springer, Berlin, 1998.

    Google Scholar 

  23. K.-E. Hellwig and K. Kraus. Operations and measurements II. Commun. Math. Phys., 16:142–147, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. S. Horuzhy. Introduction to algebraic quantum field theory, volume 19 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1990.

    Google Scholar 

  25. R. Haag and J. A. Swieca. When does a quantum theory describe particles? Commun. Math. Phys., 1:308–320,1965.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Huang. Quantum field theory. J. Wiley and Sons, 1998.

    Book  Google Scholar 

  27. J.M. Knight. Strict localization in quantum field theory. Journal of Mathematical Physics, 2(4):459–471, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. L. Licht. Strict localization. Journal of Mathematical Physics, 4(11): 1443–1447, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Masuda. A unique continuation theorem for solutions of the wave equation with variable coefficients. J. Math. Analysis and Applications, 21:369–376, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Masuda. Anti-locality of the one-half power of elliptic differential operators. Publ. RIMS, Kyoto University, 8:207–210, 1972/73.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Mandl and G. Shaw. Quantum field theory. Wiley. 1984.

    MATH  Google Scholar 

  32. R.E. Peierls. The development of quantum field theory. In The physicist’s conception of nature, pages 370–379. D. Reidel Publishing Cy., Dordrecht, Netherlands, 1973.

    Chapter  Google Scholar 

  33. M. Redhead. More ado about nothing. Foundations of Physics 1, 25:123–137, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Reeh and S. Schlieder. Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten Felden. Nuovo cimento (10), 22:1051–1068, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Ruijsenaars. On newton-wigner localization and superluminal propagation speeds. Ann. Physics, 137(l):33–43, 1981.

    Article  MathSciNet  Google Scholar 

  36. J.J. Sakurai. Advanced quantum mechanics. Addison Wesley Publishing Company. 1967.

    Google Scholar 

  37. S. S. Schweber. An introduction to relativistic quantum field theory. Row and Peterson and Company, 1961.

    MATH  Google Scholar 

  38. J. Schwinger. A report on quantum electrodynamics. In The physicist’s conception of nature, pages 413–429. D. Reidel Publishing Cy., Dordrecht, Netherlands, 1973.

    Chapter  Google Scholar 

  39. I. E. Segal. Quantum fields and analysis in the solution manifolds of differential equations. In Proc. Conf. on Analysis in Function Space, pages 129–153. M.I.T. Press, Cambridge, 1963.

    Google Scholar 

  40. I. E. Segal and R. W. Goodman. Anti-locality of certain Lorentz-invariant operators. J. Math. Mech., 14:629–638, 1965.

    MathSciNet  MATH  Google Scholar 

  41. G. Sterman. An introduction to quantum field theory. Cambridge University Press, 1993.

    Book  Google Scholar 

  42. P. Strange. Relativistic quantum mechanics. Cambridge University Press. 1998.

    Book  Google Scholar 

  43. R. F. Streater and A. S. Wightman. PCT, spin and statistics and all that. The Benjamin/Cummings Publishing Cy, Reading MA, 1964.

    MATH  Google Scholar 

  44. S. Summers and R. Werner. The vacuum violates Bell’s inequalities. Physics Letters 5, 110A:257–259, 1985.

    Article  MathSciNet  Google Scholar 

  45. N. Tisserand. PhD thesis (in preparation).

    Google Scholar 

  46. R. Verch. Anti-locality and a Reeh-Schlieder theorem on manifolds. Letters in Mathematical Physics, 28(2):143–154, 1994.

    Article  MATH  Google Scholar 

  47. D. Wallace. Emergence of particles from bosonic quantum field theory. http://arxiv.org preprint 2001, /abs/quant-ph/0112149, 2001.

    Google Scholar 

  48. D. Wallace. In defence of naiveté: The conceptual status of lagrangian quantum field theory. http://arxiv.org preprint 2001, /abs/quant-ph/0112148, 2001.

    MATH  Google Scholar 

  49. E. P. Wigner. Interpretation of quantum mechanics. In Quantum theory and measurement, pages 260–314. Princeton University Press, Princeton, NJ, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Hindustan Book Agency

About this chapter

Cite this chapter

De Bièvre, S. (2007). Where’s That Quantum?. In: Ali, S.T., Sinha, K.B. (eds) Contributions in Mathematical Physics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-33-0_5

Download citation

Publish with us

Policies and ethics