Some Variations on Maxwell’s Equations



Maxwell’s equations are among the most beautiful in physics, unifying the forces of electricity and magnetism in a classical field theory that explains electromagnetic waves [1]. Some well-known, profoundly-motivated variations on Maxwell’s equations have included the Born-Infeld theory (a nonlinear but Lorentz-covariant modification, that introduces an effective upper bound to the electric field strength), and the Yang-Mills equations (introducing non-Abelian gauge potentials) [2, 3]. These ideas go back many decades, and have deeply influenced the development of theoretical physics. Indeed, there has been a recent resurgence of interest in non-Abelian Born-Infeld Lagrangians [4], which turn out to have important application in string theory and related subjects [5, 6, 7, 8]. More recently, variations of Maxwell’s equations have been considered as “test theories,” with respect to which observations in astrophysics can provide upper bounds to deviations from the usual equations or laws of physics [9, 10]. We nevertheless seek to approach the idea of modifying Maxwell’s equations in new ways with appropriate humility. None of the variations considered in this article is ad hoc. Rather, each occurred in answer to a specific question in fundamental physics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. D. Jackson, Classical Electrodynamics (3rd ed.), New York: John Wiley & Sons (1999).zbMATHGoogle Scholar
  2. [2]
    M. Born & L. Infeld, Proc. R. Soc. London 144 (1934), 425.CrossRefGoogle Scholar
  3. [3]
    C. N. Yang and R. L. Mills, Phys. Rev. 95 (1954), 631.Google Scholar
  4. [4]
    R. Roskies, Phys. Rev. D, 14, N6, (1977), 1722.MathSciNetCrossRefGoogle Scholar
  5. [5]
    A. A. Tseytlin, Nuclear Phys. B 501 (1997), 41.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.-H. Park, A study of a non-Abelian generalization of the Born-Infeld action. Phys. Lett. B 458 (1999), 471.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [71.
    D. Gal’tsov and R. Kerner, Classical glueballs in non-Abelian Born-Infeld theory. Phys. Rev. Lett. 84 (2000), 5955.CrossRefGoogle Scholar
  8. [8]
    E. Serié, T. Masson, and R. Kerner, Non-Abelian generalization of Born-Infeld theory inspired by non-commutative geometry. arXiv:hep-th/030710 v2 (1 Sep 2003)Google Scholar
  9. [91.
    G. Amelino-Camelia, C. Lämmerzahl, A. Macias, and H. Müller, The search for quantum gravity signals. arXiv: gr-qc/0501053 (2005).CrossRefzbMATHGoogle Scholar
  10. [10]
    C. Laemmerzahl, A. Macias, and H. Mueller, Lorentz invariance violation and charge (non-conservation: A general theoretical frame for extensions of the Maxwell equations. arXiv: gr-qc/0501048 (2005). To appear in Phys. Rev. D 71 (2005) 025007.Google Scholar
  11. [11]
    G. A. Goldin & V. M. Shtelen, On Galilean invariance and nonlinearity in electrodynamics and quantum mechanics. Phys. Lett. A 279 (2001), 321.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    G. A. Goldin & V. M. Shtelen, Generalizations of Yang-Mills theory with nonlinear constitutive equations. J. Phys. A.: Math. Gen. 37 (2004), 10711.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    G. A. Goldin, “Perspectives on Nonlinearity in Quantum Mechanics,” in H.-D. Doebner, J.-D. Hennig, W. Lücke & V. K. Dobrev, Quantum Theory and Symmetries: Procs. of the Int’l Symposium, Goslar, Germany, 18–22 July 1999, Singapore: World Scientific (2000), pp. 111–123.Google Scholar
  14. [14]
    H.-D. Doebner & G. A. Goldin, Phys. Lett. A 162 (1992), 397.MathSciNetCrossRefGoogle Scholar
  15. [15]
    H.-D. Doebner & G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations. Phys. Rev. A 54 (1996), 3764.MathSciNetCrossRefGoogle Scholar
  16. [16]
    H.-D. Doebner, G. A. Goldin & P. Nattermann, J. Math. Phys. 40 (1999), 49.MathSciNetCrossRefGoogle Scholar
  17. [17]
    M. D. Kostin, J. Chem. Phys. 57 (1972), 3589.CrossRefGoogle Scholar
  18. [18]
    H. A. Lorentz, “Considerations on Gravitation”, in Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences, vol. II (Amsterdam, Johannes Müller, July 1900), pp. 559–574.Google Scholar
  19. [19]
    W. I. Fushchich, V. M. Shtelen, and N.I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer Acad. Publ., Dordrecht (1993).CrossRefzbMATHGoogle Scholar
  20. [20]
    M. Le Bellac and J.-M. Levy-Leblond, Galilean electromagnetism, Nuovo Cim. 14B (1973) 217.CrossRefGoogle Scholar
  21. [21]
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill (1965).zbMATHGoogle Scholar
  22. [22]
    B. Mielnik, Commun. Math. Phys. 37, 221 (1974).MathSciNetCrossRefGoogle Scholar
  23. [23]
    G. A. Goldin and G. Svetlichny, J. Math. Phys. 35, 3322 (1994).MathSciNetCrossRefGoogle Scholar
  24. [24]
    I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100, 62 (1976).CrossRefGoogle Scholar
  25. [25]
    R. Haag and U. Bannier, Commun. Math. Phys. 60, 1 (1978).CrossRefGoogle Scholar
  26. [26]
    G. A. Goldin, Nonlinear Math. Phys. 4, 6 (1997).MathSciNetCrossRefGoogle Scholar

Copyright information

© Hindustan Book Agency 2007

Authors and Affiliations

  1. 1.Krasnow Institute for Advanced StudyGeorge Mason UniversityFairfaxUSA
  2. 2.Departments of Mathematics and PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations