Skip to main content

Some Variations on Maxwell’s Equations

  • Chapter
Contributions in Mathematical Physics

Abstract

Maxwell’s equations are among the most beautiful in physics, unifying the forces of electricity and magnetism in a classical field theory that explains electromagnetic waves [1]. Some well-known, profoundly-motivated variations on Maxwell’s equations have included the Born-Infeld theory (a nonlinear but Lorentz-covariant modification, that introduces an effective upper bound to the electric field strength), and the Yang-Mills equations (introducing non-Abelian gauge potentials) [2, 3]. These ideas go back many decades, and have deeply influenced the development of theoretical physics. Indeed, there has been a recent resurgence of interest in non-Abelian Born-Infeld Lagrangians [4], which turn out to have important application in string theory and related subjects [5, 6, 7, 8]. More recently, variations of Maxwell’s equations have been considered as “test theories,” with respect to which observations in astrophysics can provide upper bounds to deviations from the usual equations or laws of physics [9, 10]. We nevertheless seek to approach the idea of modifying Maxwell’s equations in new ways with appropriate humility. None of the variations considered in this article is ad hoc. Rather, each occurred in answer to a specific question in fundamental physics.

In the first sections of this article, we discuss two variations on Maxwell’s equations that have been introduced in earlier work—a class of nonlinear Maxwell theories with well-defined Galilean limits (and correspondingly generalized Yang-Mills equations), and a linear modification motivated by the coupling of the electromagnetic potential with a certain nonlinear Schrödinger equation. In the final section, revisiting an old idea of Lorentz, we write Maxwell’s equations for a theory in which the electrostatic force of repulsion between like charges differs fundamentally in magnitude from the electrostatic force of attraction between unlike charges. We elaborate on Lorentz’ description by means of electric and magnetic field strengths, whose governing equations separate into two fully relativistic Maxwell systems—one describing ordinary electromagnetism, and the other describing a universally attractive or repulsive long-range force. If such a force cannot be ruled out a priori by known physical principles, its magnitude should be determined or bounded experimentally. Were it to exist, interesting possibilities go beyond Lorentz’ early conjecture of a relation to (Newtonian) gravity.

It is a pleasure to dedicate this paper to Gérard Emch, whose skeptical perspective helps motivate those who know him to the pursuit of deeper scientific understandings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 42.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Jackson, Classical Electrodynamics (3rd ed.), New York: John Wiley & Sons (1999).

    MATH  Google Scholar 

  2. M. Born & L. Infeld, Proc. R. Soc. London 144 (1934), 425.

    Article  Google Scholar 

  3. C. N. Yang and R. L. Mills, Phys. Rev. 95 (1954), 631.

    Google Scholar 

  4. R. Roskies, Phys. Rev. D, 14, N6, (1977), 1722.

    Article  MathSciNet  Google Scholar 

  5. A. A. Tseytlin, Nuclear Phys. B 501 (1997), 41.

    Article  MathSciNet  Google Scholar 

  6. J.-H. Park, A study of a non-Abelian generalization of the Born-Infeld action. Phys. Lett. B 458 (1999), 471.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Gal’tsov and R. Kerner, Classical glueballs in non-Abelian Born-Infeld theory. Phys. Rev. Lett. 84 (2000), 5955.

    Article  Google Scholar 

  8. E. Serié, T. Masson, and R. Kerner, Non-Abelian generalization of Born-Infeld theory inspired by non-commutative geometry. arXiv:hep-th/030710 v2 (1 Sep 2003)

    Google Scholar 

  9. G. Amelino-Camelia, C. Lämmerzahl, A. Macias, and H. Müller, The search for quantum gravity signals. arXiv: gr-qc/0501053 (2005).

    Book  MATH  Google Scholar 

  10. C. Laemmerzahl, A. Macias, and H. Mueller, Lorentz invariance violation and charge (non-conservation: A general theoretical frame for extensions of the Maxwell equations. arXiv: gr-qc/0501048 (2005). To appear in Phys. Rev. D 71 (2005) 025007.

    Google Scholar 

  11. G. A. Goldin & V. M. Shtelen, On Galilean invariance and nonlinearity in electrodynamics and quantum mechanics. Phys. Lett. A 279 (2001), 321.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. A. Goldin & V. M. Shtelen, Generalizations of Yang-Mills theory with nonlinear constitutive equations. J. Phys. A.: Math. Gen. 37 (2004), 10711.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. A. Goldin, “Perspectives on Nonlinearity in Quantum Mechanics,” in H.-D. Doebner, J.-D. Hennig, W. Lücke & V. K. Dobrev, Quantum Theory and Symmetries: Procs. of the Int’l Symposium, Goslar, Germany, 18–22 July 1999, Singapore: World Scientific (2000), pp. 111–123.

    Google Scholar 

  14. H.-D. Doebner & G. A. Goldin, Phys. Lett. A 162 (1992), 397.

    Article  MathSciNet  Google Scholar 

  15. H.-D. Doebner & G. A. Goldin, Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations. Phys. Rev. A 54 (1996), 3764.

    Article  MathSciNet  Google Scholar 

  16. H.-D. Doebner, G. A. Goldin & P. Nattermann, J. Math. Phys. 40 (1999), 49.

    Article  MathSciNet  Google Scholar 

  17. M. D. Kostin, J. Chem. Phys. 57 (1972), 3589.

    Article  Google Scholar 

  18. H. A. Lorentz, “Considerations on Gravitation”, in Koninklijke Akademie van Wetenschappen te Amsterdam, Proceedings of the Section of Sciences, vol. II (Amsterdam, Johannes Müller, July 1900), pp. 559–574.

    Google Scholar 

  19. W. I. Fushchich, V. M. Shtelen, and N.I. Serov, Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer Acad. Publ., Dordrecht (1993).

    Book  MATH  Google Scholar 

  20. M. Le Bellac and J.-M. Levy-Leblond, Galilean electromagnetism, Nuovo Cim. 14B (1973) 217.

    Article  Google Scholar 

  21. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, New York: McGraw-Hill (1965).

    MATH  Google Scholar 

  22. B. Mielnik, Commun. Math. Phys. 37, 221 (1974).

    Article  MathSciNet  Google Scholar 

  23. G. A. Goldin and G. Svetlichny, J. Math. Phys. 35, 3322 (1994).

    Article  MathSciNet  Google Scholar 

  24. I. Bialynicki-Birula and J. Mycielski, Ann. Phys. 100, 62 (1976).

    Article  Google Scholar 

  25. R. Haag and U. Bannier, Commun. Math. Phys. 60, 1 (1978).

    Article  Google Scholar 

  26. G. A. Goldin, Nonlinear Math. Phys. 4, 6 (1997).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Hindustan Book Agency

About this chapter

Cite this chapter

Ascoli, G.A., Goldin, G.A. (2007). Some Variations on Maxwell’s Equations. In: Ali, S.T., Sinha, K.B. (eds) Contributions in Mathematical Physics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-33-0_3

Download citation

Publish with us

Policies and ethics