Partial *-Algebras, A Tool for the Mathematical Description of Physical Systems



Forty years ago, Haag and Kastler [27] introduced the algebraic approach to Quantum Field Theory, and soon their method was extended to statistical mechanics. The rationale was to free the theory from particular realizations, linked to specific models, and to focus on the basic structure, namely, the algebra of observables and states on it. This more abstract language, exploiting the deep mathematical theories of C*-algebras and von Neumann algebras, soon became the standard approach to the mathematically rigorous description of physical systems with infinitely many degrees of freedom. Textbooks flourished and, among many authors, Gérard Emch argued forcefully for the new approach [6].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, Berlin, Heidelberg (1988).CrossRefzbMATHGoogle Scholar
  2. [2]
    J-P. Antoine and A. Grossmann, Partial inner product spaces. I. General properties. II. Operators, J. Funct. Anal. 23, 369–378, 379–391 (1976).CrossRefzbMATHGoogle Scholar
  3. [3]
    J-P. Antoine, Partial inner product spaces. III. Compatibility relations revisited. IV. Topological considerations, J. Math. Phys. 21, 268–279, 2067–2079 (1980).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J-P. Antoine and K. Gustafson, Partial inner product spaces and semi-inner product spaces, Adv. in Math. 41, 281–300 (1981).MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J-P. Antoine and W. Karwowski, Partial *-algebras of closed operators, in Quantum Theory of Particles and Fields, pp. 13–30; B. Jancewicz and J. Lukierski (eds.), World Scientific, Singapore (1983).Google Scholar
  6. [6]
    J-P. Antoine and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS, Kyoto Univ. 21, 205–236 (1985); Add./Err. ibid. 22, 507–511 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    J-P. Antoine, F. Gesztesy, and J. Shabani, Exactly solvable models of sphere interactions in Quantum Mechanics, J. of Physics A: Math. Gen. 20, 3687–3712 (1987).MathSciNetCrossRefGoogle Scholar
  8. [8]
    J-P. Antoine and F. Mathot, Partial *-algebras of closed operators and their commutants. I. General structure, Ann. Inst. H. Poincaré 46, 299–324 (1987).MathSciNetzbMATHGoogle Scholar
  9. [9]
    J-P. Antoine, A. Inoue, and C. Trapani, Partial *-algebras of closable operators I. The basic theory and the abelian case, Publ. RIMS, Kyoto Univ. 26, 359–395 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J-P. Antoine, A. Inoue, and C. Trapani, Spatial theory of *-automorphisms on partial 0*-algebras, J. Math. Phys. 35, 3059–3073 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J-P. Antoine, A. Inoue, and C. Trapani, Partial *-algebras of closable operators: A review, Reviews Math. Phys. 8, 1–42 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    J-P. Antoine, F. Bagarello and C. Trapani, Topological partial *-algebras: Basic properties and examples, Reviews Math. Phys. 11, 267–302 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    J-P. Antoine, A. Inoue, and C. Trapani, Biweights on partial *-algebras, J. Math. Anal. and Appl. 242, 164–190 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    J-P. Antoine, A. Inoue, and C. Trapani, Partial *-Algebras and Their Operator Realizations, Mathematics and Its Applications, vol. 553, Kluwer, Dordrecht, NL (2002).CrossRefzbMATHGoogle Scholar
  15. [15]
    J-P. Antoine and C. Trapani, A note on Banach partial *-algebras, Mediterr. j. math. 3, 67–86 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    J-P. Antoine, C. Trapani, and F. Tschinke, Biweights and *-homomorphisms of partial *-algebras, Int. J. Math, and Math. Sci. (2006) art. ID 54793, 1–20.Google Scholar
  17. [17]
    F. Bagarello and C. Trapani, Lp-spaces as quasi *-algebras, J. Math. Anal. Appl., 197, 810–824 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin (1976).CrossRefzbMATHGoogle Scholar
  19. [19]
    H. J. Borchers, Energy and momentum as observables in quantum field theory, Commun. Math. Phys. 2, 49–54 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II, Springer-Verlag, Berlin (1979).CrossRefzbMATHGoogle Scholar
  21. [21]
    H. W. Davis, F. J. Murray, and J. K. Weber, Families of Lp spaces with inductive and projective topologies, Pacific J. Math. 34, 619–638 (1970); Inductive and projective limits of Lp spaces, Portug. Math. 31, 21–29 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. F. dell’ Antonio, On some groups of automorphisms of physical observables, Commun. Math. Phys. 2, 384–397 (1966).MathSciNetCrossRefGoogle Scholar
  23. [23]
    J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris (1957, 1969)zbMATHGoogle Scholar
  24. [24]
    G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York (1972).zbMATHGoogle Scholar
  25. [25]
    J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13, 1–21 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Grossmann, R. Hoegh-Krohn and M. Mebkhout, A class of explicity soluble, local, many-center Hamiltonians for one-particle quantum mechanics in two and three dimensions, J. Math. Phys. 21 (1980) 2376–2385MathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Haag and D. Kastler, An algebraic approach to Quantum Field Theory, J. Math. Phys. 5, 848–861 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    R. Jost, The General Theory of Quantized Fields, Amer. Math. Soc, Providence, RI (1965).zbMATHGoogle Scholar
  29. [29]
    R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Commun. Math. Phys. 4, 32–63 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    G. Lassner, Topological algebras of operators, Rep. Math. Phys. 3, 279–293 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    R. T. Powers, Self-adjoint algebras of unbounded operators. I, Commun. Math. Phys. 21, 85–124 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin (1990).CrossRefzbMATHGoogle Scholar
  33. [33]
    S. Stratila and L. Zsidó, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, UK(1979).zbMATHGoogle Scholar
  34. [34]
    R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, Benjamin, New York (1964).zbMATHGoogle Scholar
  35. [35]
    A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.zbMATHGoogle Scholar

Copyright information

© Hindustan Book Agency 2007

Authors and Affiliations

  1. 1.Institut de Physique ThéoriqueUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations