Skip to main content

Partial *-Algebras, A Tool for the Mathematical Description of Physical Systems

  • Chapter
Contributions in Mathematical Physics
  • 271 Accesses

Abstract

Forty years ago, Haag and Kastler [27] introduced the algebraic approach to Quantum Field Theory, and soon their method was extended to statistical mechanics. The rationale was to free the theory from particular realizations, linked to specific models, and to focus on the basic structure, namely, the algebra of observables and states on it. This more abstract language, exploiting the deep mathematical theories of C*-algebras and von Neumann algebras, soon became the standard approach to the mathematically rigorous description of physical systems with infinitely many degrees of freedom. Textbooks flourished and, among many authors, Gérard Emch argued forcefully for the new approach [6].

We review the main steps in the development of partial *-algebras. First we discuss the algebraic structure stemming from the partial multiplication. Then we study in some detail the locally convex partial *-algebras, in particular, the Banach partial *-algebras, and we describe a number of concrete examples. Next we consider the partial *-algebras of closable operators in Hilbert spaces (partial O*-algebras), with a special emphasis on their *-automorphisms. Finally we sketch the representation theory of abstract partial *-algebras and give some instances of possible physical applications.

To Gérard Emch, colleague, friend, editor, on the occasion of his 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 42.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and, H. Holden, Solvable Models in Quantum Mechanics, Springer-Verlag, New York, Berlin, Heidelberg (1988).

    Book  MATH  Google Scholar 

  2. J-P. Antoine and A. Grossmann, Partial inner product spaces. I. General properties. II. Operators, J. Funct. Anal. 23, 369–378, 379–391 (1976).

    Article  MATH  Google Scholar 

  3. J-P. Antoine, Partial inner product spaces. III. Compatibility relations revisited. IV. Topological considerations, J. Math. Phys. 21, 268–279, 2067–2079 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. J-P. Antoine and K. Gustafson, Partial inner product spaces and semi-inner product spaces, Adv. in Math. 41, 281–300 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. J-P. Antoine and W. Karwowski, Partial *-algebras of closed operators, in Quantum Theory of Particles and Fields, pp. 13–30; B. Jancewicz and J. Lukierski (eds.), World Scientific, Singapore (1983).

    Google Scholar 

  6. J-P. Antoine and W. Karwowski, Partial *-algebras of closed linear operators in Hilbert space, Publ. RIMS, Kyoto Univ. 21, 205–236 (1985); Add./Err. ibid. 22, 507–511 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  7. J-P. Antoine, F. Gesztesy, and J. Shabani, Exactly solvable models of sphere interactions in Quantum Mechanics, J. of Physics A: Math. Gen. 20, 3687–3712 (1987).

    Article  MathSciNet  Google Scholar 

  8. J-P. Antoine and F. Mathot, Partial *-algebras of closed operators and their commutants. I. General structure, Ann. Inst. H. Poincaré 46, 299–324 (1987).

    MathSciNet  MATH  Google Scholar 

  9. J-P. Antoine, A. Inoue, and C. Trapani, Partial *-algebras of closable operators I. The basic theory and the abelian case, Publ. RIMS, Kyoto Univ. 26, 359–395 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. J-P. Antoine, A. Inoue, and C. Trapani, Spatial theory of *-automorphisms on partial 0*-algebras, J. Math. Phys. 35, 3059–3073 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  11. J-P. Antoine, A. Inoue, and C. Trapani, Partial *-algebras of closable operators: A review, Reviews Math. Phys. 8, 1–42 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. J-P. Antoine, F. Bagarello and C. Trapani, Topological partial *-algebras: Basic properties and examples, Reviews Math. Phys. 11, 267–302 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  13. J-P. Antoine, A. Inoue, and C. Trapani, Biweights on partial *-algebras, J. Math. Anal. and Appl. 242, 164–190 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. J-P. Antoine, A. Inoue, and C. Trapani, Partial *-Algebras and Their Operator Realizations, Mathematics and Its Applications, vol. 553, Kluwer, Dordrecht, NL (2002).

    Book  MATH  Google Scholar 

  15. J-P. Antoine and C. Trapani, A note on Banach partial *-algebras, Mediterr. j. math. 3, 67–86 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  16. J-P. Antoine, C. Trapani, and F. Tschinke, Biweights and *-homomorphisms of partial *-algebras, Int. J. Math, and Math. Sci. (2006) art. ID 54793, 1–20.

    Google Scholar 

  17. F. Bagarello and C. Trapani, Lp-spaces as quasi *-algebras, J. Math. Anal. Appl., 197, 810–824 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Bergh and J. Löfström, Interpolation Spaces, Springer, Berlin (1976).

    Book  MATH  Google Scholar 

  19. H. J. Borchers, Energy and momentum as observables in quantum field theory, Commun. Math. Phys. 2, 49–54 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, II, Springer-Verlag, Berlin (1979).

    Book  MATH  Google Scholar 

  21. H. W. Davis, F. J. Murray, and J. K. Weber, Families of L p spaces with inductive and projective topologies, Pacific J. Math. 34, 619–638 (1970); Inductive and projective limits of L p spaces, Portug. Math. 31, 21–29 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. F. dell’ Antonio, On some groups of automorphisms of physical observables, Commun. Math. Phys. 2, 384–397 (1966).

    Article  MathSciNet  Google Scholar 

  23. J. Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Gauthier-Villars, Paris (1957, 1969)

    MATH  Google Scholar 

  24. G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York (1972).

    MATH  Google Scholar 

  25. J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13, 1–21 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Grossmann, R. Hoegh-Krohn and M. Mebkhout, A class of explicity soluble, local, many-center Hamiltonians for one-particle quantum mechanics in two and three dimensions, J. Math. Phys. 21 (1980) 2376–2385

    Article  MathSciNet  Google Scholar 

  27. R. Haag and D. Kastler, An algebraic approach to Quantum Field Theory, J. Math. Phys. 5, 848–861 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Jost, The General Theory of Quantized Fields, Amer. Math. Soc, Providence, RI (1965).

    MATH  Google Scholar 

  29. R. V. Kadison and J. R. Ringrose, Derivations and automorphisms of operator algebras, Commun. Math. Phys. 4, 32–63 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  30. G. Lassner, Topological algebras of operators, Rep. Math. Phys. 3, 279–293 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  31. R. T. Powers, Self-adjoint algebras of unbounded operators. I, Commun. Math. Phys. 21, 85–124 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  32. K. Schmüdgen, Unbounded Operator Algebras and Representation Theory, Akademie-Verlag, Berlin (1990).

    Book  MATH  Google Scholar 

  33. S. Stratila and L. Zsidó, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, UK(1979).

    MATH  Google Scholar 

  34. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, Benjamin, New York (1964).

    MATH  Google Scholar 

  35. A. C. Zaanen, Integration, North-Holland, Amsterdam, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Hindustan Book Agency

About this chapter

Cite this chapter

Antoine, JP. (2007). Partial *-Algebras, A Tool for the Mathematical Description of Physical Systems. In: Ali, S.T., Sinha, K.B. (eds) Contributions in Mathematical Physics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-33-0_2

Download citation

Publish with us

Policies and ethics