Skip to main content

Berezin-Toeplitz Quantization over Matrix Domains

  • Chapter

Abstract

Let Ω be a symplectic manifold, with symplectic form ω, and \( \mathcal{H} \) a subspace of L2(Ω, d µ), for some measure µ, admitting a reproducing kernel K. For φC(Ω), the Toeplitz operator T φ with symbol φ is the operator on \( \mathcal{H} \) defined by

$$ {{T}_{\phi }}f=P\left( {\phi f} \right),\:f\in \mathcal{H}, $$

where P: L2((Ω), d µ) → \( \mathcal{H} \) is the orthogonal projection. Using the reproducing kernel K, this can also be written as

$${T_\phi }f(x) = \int_\Omega {d(y)\phi (y)K(x,y)d\mu (y)} .$$

We explore the possibility of extending the well-known Berezin-Toeplitz quantization to reproducing kernel spaces of vector-valued functions. In physical terms, this can be interpreted as accommodating the internal degrees of freedom of the quantized system. We analyze in particular the vector-valued analogues of the classical Segal-Bargmann space on the domain of all complex matrices and of all normal matrices, respectively, showing that for the former a semi-classical limit, in the traditional sense, does not exist, while for the latter only a certain subset of the quantized observables have a classical limit: in other words, in the semiclassical limit the internal degrees of freedom disappear, as they should. We expect that a similar situation prevails in much more general setups.

Dedicated to Gerard G. Emch on the occasion of his 70th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   42.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-T. Ali, J.-P. Antoine, J.-P. Gazeau: Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.

    Book  MATH  Google Scholar 

  2. S.-T. Ali, M. Engliš: Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17 (2005), 391–490.

    Article  MathSciNet  MATH  Google Scholar 

  3. S.-T. Ali, M. Engliš, J.-P. Gazeau: Vector Coherent States from Plancherel’s Theorem, Clifford Algebras and Matrix Domains, J. Phys. A: Math. Gen. 37 (2004), 6067–6089.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Bordemann, E. Meinrenken, M. Schlichenmaier: Toeplitz quantization of Kähler manifolds and gl(n), n → ∞ limits, Comm. Math. Phys. 165 (1994), 281–296.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Ginibre: Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys. 6 (1965), 440–449.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Hörmander: The analysis of linear partial differential operators, vol. I, Grundlehren der mathematischen Wissenschaften, vol. 256, Springer-Verlag, Berlin — Heidelberg — New York — Tokyo, 1985.

    MATH  Google Scholar 

  7. A.V. Karabegov, M. Schlichenmaier: Identification of Berezin-Toeplitz deformation quantization, J. reine angew. Math. 540 (2001), 49–76.

    MathSciNet  MATH  Google Scholar 

  8. C. Kristjansen, J. Plefka, G.W. Semenoff, M. Staudacher: A new double-scaling limit of N = 4 super-Yang-Mills theory and pp-wave strings, Nuclear Physics B 643 (2002), 3–30.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Merzbacher, Quantum Mechanics, Wiley, New York, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Hindustan Book Agency

About this chapter

Cite this chapter

Ali, S.T., Engliš, M. (2007). Berezin-Toeplitz Quantization over Matrix Domains. In: Ali, S.T., Sinha, K.B. (eds) Contributions in Mathematical Physics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-33-0_1

Download citation

Publish with us

Policies and ethics