Skip to main content

Part of the book series: Texts and Readings in Physical Sciences ((TRiPS))

  • 230 Accesses

Abstract

The existence of an almost massless neutral particle (later on called neutrino by Fermi) was postulated by Pauli in 1932 to account for the continuous energy spectrum of the electrons emitted in nuclear (β decay. This particle was required to be a fermion in order to conserve angular momentum. Fermi incorporated this particle into a detailed theory of nuclear beta decay which could account for the observed shape of the electron energy distribution found in many nuclear beta decays. With availability of more experimental results, the original Fermi theory underwent many changes and finally culminated into a simple and elegant VA theory [1, 2] which universally describes all the known (charged) weak interaction processes at low energy [3, 4, 5, 6]. The VA theory is basically an effective theory which allows reliable calculations of weak interaction processes at energies ≪ O(100) GeV. The basic structure of this theory was later on generalized into a full fledged quantum theory based on ideas of spontaneously broken local gauge invariance [7]. It became possible to unify the weak and electromagnetic interactions within this framework. The resulting theory is now known as the standard electroweak model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 68.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  1. E.C.G. Sudarshan and R. Marshak, Phys. Rev. 109 1860 (1958).

    Article  ADS  Google Scholar 

  2. R.P. Feynman and M. Gell-Mann, Phys. Rev. 109 193 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  3. E.D. Commins and P.H. Bucksbum, Weak interactions of leptons and quarks, Cambridge University Press (1983).

    Google Scholar 

  4. B. Kayser, G. Debu and F. Perrier, The physics of massive neutrinos, World Scientific (1989).

    Book  Google Scholar 

  5. R.N. Mohapatra and P.B. Pal, Massive neutrinos in physics and astrophysics, World Scientific (1991).

    Book  Google Scholar 

  6. C.W. Kim and A. Pevsner, Neutrinos in physics and astrophysics, Harwood Academic Publishers (1993)

    Google Scholar 

  7. E.S. Abers, and B.W. Lee, Phys. Rep. C9(1) 1,(1973);

    Article  ADS  Google Scholar 

  8. S. Weinberg, Rev. Mod. Phys. 46 (1974) 255.

    Article  ADS  Google Scholar 

  9. C.L. Cowan et al, Science 124 103 (1956).

    Article  ADS  Google Scholar 

  10. K. Kodama et al, Phys. Lett. B504 218 (2001).

    Article  Google Scholar 

  11. J. Bahcall et al, Solar neutrinos: The first thirty years, Perseus Publishing (1995).

    Google Scholar 

  12. J. Bahcal, Neutrino astrophysics, Cambridge University Press (1989).

    Google Scholar 

  13. P.H. Frampton and P. Vogel, Phys. Rep. 82 339 (1982).

    Article  ADS  Google Scholar 

  14. S.M. Bilenky and S.T. Petcov, Rev. Mod. Phys. 59 671 (1987).

    Article  ADS  Google Scholar 

  15. T. K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61 937 (1989).

    Article  ADS  Google Scholar 

  16. W.C. Hexton and B. Holstein, hep-ph/9905257.

    Google Scholar 

  17. A.S. Joshipura and S.D. Rindani, Phys. Lett. B494 (2000) 114.

    Article  Google Scholar 

  18. A.S. Joshipura, hep-ph/0204305.

    Google Scholar 

  19. Particle Data Group, K. Hagiwara et al, Phys. Rev. D66 (2002) 010001.

    Google Scholar 

  20. An incomplete list of reference is given by H. V. Klapdor-Kleingrothaus, H. Pas and A. Yu. Smirnov, Phys. Rev. D63 (2001) 73005; H. Minakata and O. Yasuda, hep-ph/9609276;

    ADS  Google Scholar 

  21. W. Rodejohann, Nucl. Phys. B597 (2001) 110 and hepph/0203214; F. Vissani, hep-ph/9904349;

    Article  ADS  Google Scholar 

  22. S.M. Bilenky et al, Phys. Lett. B465 (1999) 193;

    Article  Google Scholar 

  23. S.M. Bilenky, S. Pascoli and S.T. Petcov, Phys. Rev. D64 (2001) 053010; H. Minakata and H. Sugiyama, hep-ph/0111269 and hep-ph/0202003; S. Pascoli and S.T. Petcov, hep-ph/0205022.

    ADS  Google Scholar 

  24. The latest and earlier results and details of the experiments can be found at http://www-sk.icrr.u-tokyo.ac.jp

  25. B.T. Cleveland et al, Astrophys. J. 496 (1998) 505.

    Article  ADS  Google Scholar 

  26. The Gallex collaboration, Phys. Lett. 447 (1999) 127.

    Article  Google Scholar 

  27. The SAGE collaboration, astro-ph/0204245.

    Google Scholar 

  28. The SNO collaboration, nucl-ex/0204008 and nucl-ex/0204009. See also http://www.sno.phy.queensu.ca/sno.

  29. For reviews of various models, see, A.Yu. Smirnov, hep-ph/9901208; R.N. Mohapatra, hep-ph/9910365; A.S. Joshipura, Pramana 54 (2000) 119.

    Article  ADS  Google Scholar 

  30. A. Bandyopadhyay et al, hep-ph/00204286; V. Barger et al, hep-ph/0204253; J.N. Bahcall et. al, hep-ph/0204314; P.C. de-Hollanda and A. Yu. Smirnov, hep-ph/0205241; C.V.K. Baba, D. Indumathi and M.V.N. Murthy, Phys. Rev. D65 (2002) 073033.

    Google Scholar 

  31. The LSND collaboration, hep-ex/0104049 and Phys. Rev. Lett. 81 (1998) 1774.

    Google Scholar 

  32. The Karmen Collaboration, hep-ex/0203021 and E.D. Church et al, hep-ex/0203023.

    Google Scholar 

  33. CHOOZ collaboration, M. Apollonio et al, Phys. Lett. B466 (1999) 415.

    Article  Google Scholar 

  34. G.B. Gelmini and M. Roncadelli, Phys. Lett. 193 (1981) 297.

    Google Scholar 

  35. A.S. Joshipura, Int. J. Mod. Phys. 7 (1982) 2021.

    Article  ADS  Google Scholar 

  36. A. Zee, Phys. Lett. B93 (1980) 389.

    Article  Google Scholar 

  37. K.S. Babu, Phys. Lett. B203 (1988) 132.

    Article  Google Scholar 

  38. I. Dorsner and S.M. Barr, Nucl. Phys. B617 (2001) 493.

    Article  ADS  Google Scholar 

  39. K.S. Babu and E. Ma, Mod. Phys. Lett. A4 (1989) 1975.

    Article  ADS  Google Scholar 

  40. Y. Koide, Nucl. Phys. Proc. Suppl. 111, 294 (2002) [hep-ph/0201250].

    Google Scholar 

  41. A.Y. Smirnov and M. Tanimoto, Phys. Rev. D 55, 1665 (1997) [hep-ph/9604370].

    Google Scholar 

  42. B. Brahmachari and A.S. Choubey, Phys. Lett B531 (192002) 99;

    Google Scholar 

  43. A.S. Joshipura and P. Krastev, Phys. Rev. D50 (191994) 31.

    Google Scholar 

  44. S. Goswami, Plenary talk at the International Symposium, PASCOS03, Bombay, India (2003), hep-ph/0307224.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Hindustan Book Agency

About this chapter

Cite this chapter

Joshipura, A.S. (2005). Physics of Massive Neutrinos. In: Ghoshal, D. (eds) Current Perspectives in High Energy Physics. Texts and Readings in Physical Sciences. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-26-2_1

Download citation

Publish with us

Policies and ethics