Skip to main content

From Functional Analysis to Asymptotic Geometric Analysis

  • Chapter
History of the Mathematical Sciences
  • 117 Accesses

Abstract

I am not an expert in the History of Mathematics and I am saying this only because I consider it, in fact, a very non-trivial and important subject that explains (or should explain) the development of abstract thinking, i.e. how our civilization became what it is. It is a mystery to me and I have many, many questions and “whys”. Say, does our ability for abstract thinking also develop with time? Do our children adapt more easily to abstract notions than children thousands of years ago? I believe the study of ways of thinking through mathematics from ancient sources may help us to understand it. (It is definitely not a task for archeologists or anthropologists.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Banach. Theorie des operations linéaires. Monografje Matematyczne, Warsaw, 1932.

    MATH  Google Scholar 

  2. A. Connes. Noncommutative Geometry. Academic Press, 1994.

    MATH  Google Scholar 

  3. M. Day. Normed Linear Spaces. Number 139. Springer-Verlag, Berlin-Gottingen-Heidelberg, 1958.

    Book  MATH  Google Scholar 

  4. N. Dunford and J.T. Schwartz. Linear Operators. Part I. General Theory, 1958.

    MATH  Google Scholar 

  5. I.M. Gelfand et al. Generalized Functions (5 volumes).

    Google Scholar 

  6. I. Gelfand, D. Raikov, and G. Shilov. Commutative Normed Rings. Translated from the Russian, with a supplementary chapter. Number 306. Chelsea Publishing Co., New York, 1964.

    Google Scholar 

  7. M. Ledoux. Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, volume 89. AMS, 2001.

    Google Scholar 

  8. P. Levy. Problèmes concrets d’analyse fonctionelle. Gauthier-Villars, Paris, 1951.

    Google Scholar 

  9. J. M. Lindenstrauss and L. Tzafiri. Classical Banach Spaces. I. Sequence Spaces, volume 92. Springer-Verlag, Berlin-New York, 1977. 188 pp.

    Book  Google Scholar 

  10. J. M. Lindenstrauss and L. Tzafiri. Classical Banach spaces. II. Function spaces, volume 97. Springer-Verlag, Berlin-New York, 1979. 243 pp.

    Book  Google Scholar 

  11. V. D. Milman and G. Schechtman. Asymptotic Theory of Finite-dimensional Normed Spaces. With an appendix by M. Gromov. Number 1200 in Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1986. 156 pp.

    Google Scholar 

  12. G. Pisier. Factorization of Linear Operators and Geometry of Banach Spaces. Number 60 in CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1986. 154 pp.

    Book  MATH  Google Scholar 

  13. G. Pisier. The Volume of Convex Bodies and Banach Space Geometry. Number 94 in Cambridge Tracts in CBMS Regional Conference Series in Mathematics Mathematics. Cambridge University Press, Cambridge, 1989.250 pp.

    Book  MATH  Google Scholar 

  14. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Number 44 in Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. 490 pp.

    Book  Google Scholar 

  15. N. Tomaczak-Jaegermann. Banach-Mazur Distances and Finite-dimen sional Operator Ideals. Number 38 in Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Harlow, 1989. 395 pp.

    Google Scholar 

Surveys and semi-surveys on additional aspects of the theory

  1. W. T. Gowers. Recent results in the theory of infinite-dimensional banach spaces. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994), pages 933–942. Birkhauser, Basel, 1995.

    Chapter  Google Scholar 

  2. A. N. Kolmogorov and V. M. Tihomirov. ε-entropy and ε-capacity of sets in function spaces. (Russian). Uspehi Mat. Nauk 14, 86(2):3–86, 1959. [English translation: ε-entropy and ε-capacity of sets in functional space. Amer. Math. Soc. Transi. (2) 17 (1961), 277–364.].

    MathSciNet  Google Scholar 

  3. J. Lindenstrauss and V D. Milman. Absolutely summing operators in l p -spaces and their applications. Studia Math., 29:275–326, 1968.

    MathSciNet  MATH  Google Scholar 

  4. J. Lindenstrauss and V. D. Milman. Handbook of Convex Geometry, Vol. A, B, chapter The local theory of normed spaces and its applications to convexity, pages 1149–1220. North-Holland, Amsterdam, 1993.

    Google Scholar 

  5. V. D. Milman. Geometric theory of Banach spaces. I. Theory of basic and minimal systems. (Russian). Uspehi Mat. Nauk25, 153(3): 113–174, 1970.

    MathSciNet  Google Scholar 

  6. V. D. Milman. Geometric theory of Banach spaces. II. Geometry of the unit ball. (Russian). UspehiMat. Nauk 26, 162(6):73–149, 1971. (Both articles are translated in “Russian Math. Surveys”.).

    MathSciNet  Google Scholar 

  7. V. D. Milman. The heritage of P. Levy in geometrical functional analysis. In Colloque Paul Levy sur les Processus Stochastiques (Palaiseau, 1987). Asterisque No. 757–758, pages 273–301,1988.

    Google Scholar 

  8. V. D. Milman. Dvoretzky’s theorem — thirty years later. Geom. Funct. Anal., 2(4):455–479, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. D. Milman. Topics in asymptotic geometric analysis. GAFA 2000 (Tel Aviv, 1999). Geom. Funct. Anal. 2000, Special Volume, Part II, 2000. 792–815.

    Google Scholar 

  10. E. Odell. in Proceedings of Analysis and Logic Meeting, Mons, Belgium, August 1997 (C. Finett, C. Michaux, eds), London Math. Soc. Lecture Notes. Cambridge Press, 2001.

    Google Scholar 

Some additional research papers, including papers of historical interest

  1. J. Bourgain, J. Lindenstrauss, and V. D. Milman. Minkowski sums and symmetrizations. In Geometric Aspects of Functional Analysis (1986/87), Lecture Notes in Math., 1376, pages 44–66, Berlin, 1988. Springer.

    Google Scholar 

  2. J. Bourgain, J. Lindenstrauss, and V. Milman. Estimates related to Steiner symmetrizations. In Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., 1376, pages 264–273, 1989.

    Chapter  Google Scholar 

  3. P. Enflo. A counterexample to the approximation problem in Banach spaces. Acta Math., 130:309–317, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Enflo. On the invariant subspace problem for Banach spaces. Acta Math., 158(3–4):231–313, 1987.

    MathSciNet  MATH  Google Scholar 

  5. A. Grothendieck. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. no.16, 1955.

    Google Scholar 

  6. B. Klartag. 5n Minkowski symmetrizations suffice to arrive at an approximate Euclidean ball. Annals of Math., 156(3), 2002.

    Google Scholar 

  7. J.-L. Krivine and B. Maurey. Espaces de Banach stables. (French) [Stable Banach spaces]. Israel J. Math., 39(4):273–295,1981.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Klàrtag and V. Milman. Isomorphic Steiner symmetrization. to appear in Inventiones Mathematicae, 2003.

    Google Scholar 

  9. B. Maurey, V. D. Milman, and N. Tomczak-Jaegermann. Asymptotic infinite-dimensional theory of Banach spaces. In Geometric Aspects of Functional Analysis (Israel, 1992–1994), volume 77, pages 149–175, Basel, 1995. Birkhauser.

    Chapter  Google Scholar 

  10. B. Maurey and G. Pisier. Series de variables alatoires vectorielles independantes et proprits geometriques des espaces de Banach. (French). Studia Math., 58(l):45–90, 1976.

    MathSciNet  MATH  Google Scholar 

  11. V. Milman and N. Tomczak-Jaegermann. Asymptotic l p spaces and bounded distortions. In Banach spaces (Merida, 1992), volume 144 of Contemp. Math., pages 173–195, Providence, RI, 1993. Amer. Math. Soc.

    Chapter  Google Scholar 

  12. J. von Neumann. Approximative properties of matrices of high order rank. Portugal Math., 3:1–62, 1942.

    MATH  Google Scholar 

  13. E. Schmidt. Zum Hilbertschen Baveise des Waringschen Theorems. Math. Ann., 77:271–274, 1913.

    Article  MATH  Google Scholar 

  14. B. S. Tsirelson. It is impossible to imbed 1 p of c0 into an arbitrary banach space, (russian). Funkcional. Anal, i Priložen., 8(2):57–60, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Hindustan Book Agency

About this chapter

Cite this chapter

Milman, V. (2004). From Functional Analysis to Asymptotic Geometric Analysis. In: Grattan-Guinness, I., Yadav, B.S. (eds) History of the Mathematical Sciences. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-16-3_17

Download citation

Publish with us

Policies and ethics