Skip to main content

Representations of double affine lie algebras

  • Chapter
A Tribute to C. S. Seshadri

Abstract

We study a family of indecomposable integrable modules for the double affine algebra, the so-called Weyl modules. These modules have non-zero level with respect to one of the central elements and zero level with respect to the other. We give a condition for the modules to be irreducible, and use the idea of fusion product of modules to prove that they are generically reducible.

Dedicated to Professor C.S. Seshadri on his 70th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 68.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Adamovic, An application of U(g)-bimodules to representation theory of affine Lie algebras, preprint, 2000.

    MATH  Google Scholar 

  2. B. Allison, S. Azam, S. Berman, Y. Gao, A. Pianzola, Extended affine Lie algebras and their root systems, Mem. Amer. Math. Soc. 126, (1997), no. 603.

    Google Scholar 

  3. S. Berman and Y. Billig, Irreducible representations for toroidal Lie algebras, Jour. Alg. 221 (1999), 188–231.

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Chari, Integrable representations of affine Lie algebras, Invent. Math. 85 (1986), no. 2, 317–335.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. Chari and A. Pressley, New unitary representations of loop groups, Math. Ann. 275 (1986), no. 1, 87–104.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Chari and A. Pressley, A new family of irreducible integrable modules for affine Lie algebras, Math. Ann. 277 (1987), no.3, 543–562.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Chari and A. Pressley, An application of Lie superalgebras to affine Lie algebras, Jour. Alg. 135, (1990), 203–216.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. Chari and A. Pressley, Weyl modules for classical and quantum affine algebras. Represent. Theory 5 (2001), 191–22.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. E. Rao, Classification of irreducible integrable modules for multi-loop algebras with finite-dimensional weight spaces, Jour. Alg. 246, (2001), 215–225.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. E. Rao, Classification of irreducible integrable modules for toroidal Lie algebras with finite-dimensional weight spaces, preprint, (2001).

    Google Scholar 

  11. K. Fabricius, B. M. McCoy, Beihe’s equation is incomplete for the XXZ model at roots of unity, Preprint, cond-mat/0009279.

    Google Scholar 

  12. B. Feigin and S. Loktev, On generalizes Kostka polynomials and the quantum Verlinde rule, Amer. Math.Soc. Transi. 2 Vol. 194, (1999), 61–79.

    MATH  Google Scholar 

  13. H. Garland, The arithmetic theory of loop algebras, J. Algebra, 53, (1978), 480–551.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Greenstein, Characters of simple bounded modules over an untwisted affine algebra, Algebr. Represent. Theory, (to appear).

    Google Scholar 

  15. J. Greenstein, Littelmann’s path crystal and bounded modules for, \(\widehat{s{l_{\ell + 1}}}\), preprint, 2002.

    Google Scholar 

  16. A. Joseph, A completion of the quantized enveloping algebra of a Kac-Moody algebra, J. Alg., 214 (1999), no.1, 235–275.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, United Kingdom, 1992.

    Google Scholar 

  18. A. N. Kirillon and N. Yu. Reshetikhin, Representations of Yangians and the multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras, J.Soviet Math. 52 (1990), 3156–3164.

    Article  MathSciNet  Google Scholar 

  19. T. Le, Representations of infinite-dimensional Lie algebra, UCR thesis, 2002.

    Google Scholar 

  20. R. V. Moody, S. E. Rao and T. Yokonuma, Toroidal Lie algebras and vertex representations, Geom. Dedicata, 35, (1990), 283–307.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Nakajima, Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), no. 1, 145–238.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Saito, K. Takemura and D. Uglov, Toroidal Action on level one modules of (\(\widehat{s{l_n}}\) ), Transform. groups, 3, (1998), 75–10.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Varagnolo and E. Vasserot, Double loop algebras and Fock sapce, Invent. Math. 133 (1998), 133–159.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

V. Lakshmibai V. Balaji V. B. Mehta K. R. Nagarajan K. Pranjape P. Sankaran R. Sridharan

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Hindustan Book Agency

About this chapter

Cite this chapter

Chari, V., Le, T. (2003). Representations of double affine lie algebras. In: Lakshmibai, V., et al. A Tribute to C. S. Seshadri. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-11-8_15

Download citation

Publish with us

Policies and ethics