Skip to main content

The Cyclotomic Problem

  • Chapter
Current Trends in Number Theory

Abstract

Since the pioneering work of Gauss, the cyclotomic problem, viz., the problem of determining cyclotomic numbers of a specific order in terms of solutions of a certain diophantine system, has been treated by many authors. L. E. Dickson laid the foundations of modern cyclotomy when he showed how the Jacobi sums play an important role in this theory. The present paper is a survey of the work of a number of mathematicians on this problem and indicates the current status of the problem. Recently, Paul van Wamelen has obtained a solution to the problem for any modulus.

Dedicated to Prof. A. R. Rajwade

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 40.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. V. Acharya and S. A. Katre, Cyclotomic numbers of order 2l, l an odd prime, Acta Arith. 69 (1995), 51–74.

    MathSciNet  MATH  Google Scholar 

  2. N. Anuradha, Zeta function of the projective curve aY 2l = bX2l+ cZ2lover a class of finite fields, for odd primes l, preprint.

    Google Scholar 

  3. N. Anuradha and S. A. Katre, Number of points on the projective curves aYl= bXl+ cZland aY2l= bX2l+ cZ2ldefined over finite fields, l an odd prime, J. Number Theory 77 (1999), 288–313.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. D. Baumert, W. H. Mills, and R. L. Ward, Uniform cyclotomy, J. Number Theory 14 (1982), 67–82.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley and Sons, Inc., New York; A Wiley-Interscience Publication, 1998.

    MATH  Google Scholar 

  6. H. Davenport, The Higher Arithmetic, An introduction to the theory of numbers, Chapter VIII by J. H. Davenport, Seventh edition, Cambridge Univ. Press, Cambridge, 1999, 241 pp.

    Google Scholar 

  7. L. E. Dickson, Cyclotomy, higher congruences, and Waring’s problem, Amer. J. Math. 57 (1935), 391–424.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. E. Dickson, Cyclotomy and trinomial congruences, Trans. Araer. Math. Soc. 37 (1935), 363–380.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. F. Gauss, Disquisitiones Arithmeticae, Translated and with a preface by Arthur A. Clarke. Revised by W. C. Waterhouse, C. Greither and A. W. Grootendorst and with a preface by Waterhouse. Springer-Verlag, New York, 1986, Section 368.

    MATH  Google Scholar 

  10. C. F. Gauss, Theoria Residuorum Biquadraticorum, Werke, vol. 2 (1876), 67–92.

    Google Scholar 

  11. S. A. Katre and Aditi Bapat, Uniform cyclotomy and related zeta functions, preprint.

    Google Scholar 

  12. S. A. Katre and A. R. Rajwade, On the Jacobsthal sum ? 9 (a) and the related sum ψ 9 (a), Math. Scand. 53 (1983), no. 1, 193–202.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. A. Katre and A. R. Rajwade, Complete solution of the cyclotomic problem in F q for any prime modulus l, q = pa, p ≡ 1 (mod l), Acta Arith. 45 (1985), no. 3, 183–199.

    MathSciNet  MATH  Google Scholar 

  14. S. A. Katre and A. R. Rajwade, Unique determination of cyclotomic numbers of order five, Manuscripta Math. 53 (1985), no. 1–2, 65–75.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. A. Katre and A. R. Rajwade, Resolution of the sign ambiguity in the determination of the cyclotomic numbers of order 4 and the corresponding Jacobsthal sum, Math. Scand. 60 (1987), no. 1, 52–62.

    Article  MathSciNet  MATH  Google Scholar 

  16. Anuradha Narasimhan, Arithmetic Characterization and Applications of Jacobi Sums of Order l and 2l, Ph.D. Thesis, Univ. of Pune, 2000.

    Google Scholar 

  17. J. C. Parnami, M. K. Agrawal, and A. R. Rajwade, Jacobi sums and cyclotomic numbers for a finite field, Acta Arith. 41 (1982), no. 1, 1–13.

    MathSciNet  MATH  Google Scholar 

  18. A. R. Rajwade, Cyclotomy — a survey article, Mathematics Student 48 (1980), no. 1, 70–115.

    MathSciNet  MATH  Google Scholar 

  19. T. Storer, Cyclotomy and Difference Sets 1, Markham Publ. Co., Chicago, 1967.

    MATH  Google Scholar 

  20. F. Thaine, Properties that characterize Gaussian periods and cyclotomic numbers, Proc. Amer. Math. Soc. 124 (1996), no. 1, 35–45.

    Article  MathSciNet  MATH  Google Scholar 

  21. F. Thaine, Jacobi sums and new families of irreducible polynomials of Gaussian periods, Mathematics of Computation 70 (2001), no. 236, 1617–1640.

    Article  MathSciNet  MATH  Google Scholar 

  22. Paul van Wamelen, Jacobi sums over finite fields, Acta Arith. (2002), to appear.

    Google Scholar 

  23. Albert Leon Whiteman, The cyclotomic numbers of order ten, Proc. Sympos. Appl. Math., Vol. 10, 1960, 95–111, American Mathematical Society, Providence, R.I. and also the review by D. H. Lehmer, Math. Reviews, 22 # 4682.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Hindustan Book Agency

About this chapter

Cite this chapter

Katre, S.A. (2002). The Cyclotomic Problem. In: Adhikari, S.D., Katre, S.A., Ramakrishnan, B. (eds) Current Trends in Number Theory. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-09-5_5

Download citation

Publish with us

Policies and ethics