Skip to main content

Rogers-Ramanujan Identities

  • Chapter
Current Trends in Number Theory
  • 109 Accesses

Abstract

The following two “sum-product” identities

((1.1))

and

((1.2))

where

$${\left( {a;q} \right)_n} = \prod\limits_{i = 0}^\infty {\frac{{1 - a{q^i}}}{{1 - a{q^{n + 1}}}}} {\text{ }}$$

are known as Rogers-Ramanujan identities. (Note that if n is a positive integer, then (a;q) n = Π n − 1i = 0 (1 − aqi); (a;q)0 = 1.) They were first discovered by Rogers in 1894. After two decades they were rediscovered by Ramanujan and Schur, independently. MacMahon [12, Theorems 364, 365 p.291], gave the following combinatorial interpretations of (1.1) and (1-2), respectively:

  1. Theorem 1.1.

    The number of partitions of n into parts with minimal difference 2 equals the number of partitions of n into parts which are congruent to ±1 (mod 5).

  2. Theorem 1.2.

    The number of partitions of n with minimal part 2 and minimal difference 2 equals the number of partitions of n into parts which are congruent to ±2 (mod 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 40.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.K. Agarwal, Rogers-Ramanujan identities for n-color partitions, J. Number Theory 28 (1988), 299–305.

    Article  MathSciNet  MATH  Google Scholar 

  2. A.K. Agarwal, Lattice paths and n-color partitions, Utilitas Math. 53 (1998), 71–80.

    MathSciNet  MATH  Google Scholar 

  3. A.K. Agarwal, Rogers-Ramanujan identities for plane partitions, J. Indian Math. Soc. (N.S) 67 no. 1–4 (2000), 75–85.

    MathSciNet  MATH  Google Scholar 

  4. A.K. Agarwal, Identities and generating functions for certain classes of F-partitions, ARS Combinatoria, 57 (2000), 65–75.

    MathSciNet  MATH  Google Scholar 

  5. A.K. Agarwal and G.E. Andrews, Hook-differences and lattice paths, J. Statist. Plann. Inference 14 (1986), 5–14.

    Article  MathSciNet  MATH  Google Scholar 

  6. A.K. Agarwal and G.E. Andrews, Rogers-Ramanujan identities for partitions with “N copies of N”, J. Combin. Theory (A) 45, No.1 (1987), 40–49.

    Article  MathSciNet  MATH  Google Scholar 

  7. A.K. Agarwal and D.M. Bressoud, Lattice paths and multiple basic hypergeometric series, Pacific J. Math. 136 (2) (1989), 209–228.

    Article  MathSciNet  MATH  Google Scholar 

  8. G.E. Andrews, An analytic generalization of the Rogers-Ramanujan identities for odd moduli, Proc. Nat. Acad. Sci. USA, 71 (1974), 4082–4085.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.E. Andrews, Generalized Frobenius partitions, Mem. Amer. Math. Soc. 49 (1984), No. 301, iv + 44 pp.

    MathSciNet  MATH  Google Scholar 

  10. E.A. Bender and D.E. Knuth, Enumeration of plane partitions, J. Combin. Theory (A) 13 (1972), 40–54.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Blecksmith, J. Brillhart and I. Gerst, A computer assisted investigation of Ramanujan pairs, Math. Comp. 46, No. 174 (1986), 731–749.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Gordon, A combinatorial generalization of the Rogers-Ramanujan identities, Amer. J. Math, 83 (1961), 393–399.

    Article  MathSciNet  MATH  Google Scholar 

  13. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press (5th Edition), 1983.

    MATH  Google Scholar 

  14. L.J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math.Soc. 25 (1894), 318–343.

    MathSciNet  Google Scholar 

  15. M.V. Subbarao, Some Rogers-Ramanujan type partition theorems, Pacific J. Math. 120 (1985), 431–435.

    Article  MathSciNet  MATH  Google Scholar 

  16. M.V. Subbarao and A.K. Agarwal, Further theorems of the Rogers-Ramanujan type theorems, Canad. Math. Bull. 31 (2) (1988), 210–214.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Hindustan Book Agency

About this chapter

Cite this chapter

Agarwal, A.K. (2002). Rogers-Ramanujan Identities. In: Adhikari, S.D., Katre, S.A., Ramakrishnan, B. (eds) Current Trends in Number Theory. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-09-5_2

Download citation

Publish with us

Policies and ethics