Skip to main content

Zeta Functions for Curves Defined over Finite Fields

  • Chapter
  • 108 Accesses

Abstract

We provide a historical background to the congruence zeta function and the Weil conjectures for non-singular projective curves defined over finite fields. We state these conjectures, and also the more recent Weil theorem for singular curves defined over finite fields. We end by remarking on some explicit results we have obtained for the zeta functions of some concrete classes of curves (both non-singular and singular) defined over a certain class of finite fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   40.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Anuradha and S. A. Katre, Number of points on the projective curves aYl = bXl + cZland aY2l = bX2l + cZ2ldefined over finite fields, l an odd prime, J. Number Theory 77 (1999), 288–313.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Anuradha, Zeta function of the projective curve aY21 = bX2l+cZ2lover a class of finite fields, for odd primes l, Indian J. Math. to appear.

    Google Scholar 

  3. N. Anuradha, Jacobsthal sums and explicit zeta functions for certain hyper-elliptic curves defined over a class of finite fields, preprint.

    Google Scholar 

  4. E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 153–206, 207–246.

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Aubry and M. Perret, A Weil theorem for singular curves, Proc. Conf. at Institut de Mathématique de Luminy, Marseille-Luminy (1993), de Gruyter, Berlin, 1996, 1–7.

    MATH  Google Scholar 

  6. E. Bombieri, Counting points on curves over finite fields (d’après S. A, Stepanov), Séminaire Bourbaki 1972/73, Exp. 430, Lecture Notes in Math., Vol. 383, pp. 234–241, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

    Article  MATH  Google Scholar 

  7. B. Dwork, On the rationality of the zeta function of an algebraic variety, Amer. J. Math. 82 (1960), 631–648.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Hasse, Zur Theorie der abstrakten elliptischen Funktionenkörper I, II, III, 3. Reine Angew. Math. 175 (1936), 55–62, 69–88, 193–208.

    MathSciNet  MATH  Google Scholar 

  9. J. Igusa, On the theory of algebraic correspondences and its application to the Riemann hypothesis in function fields, J. Math. Soc. Japan 1 (1949), 147–197.

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Moreno, Algebraic Curves over Finite Fields, Cambridge Tracts in Mathematics, Vol. 97, Cambridge Univ. Press, Cambridge, MA, 1991.

    Book  Google Scholar 

  11. P. Roquette, Riemannsche Vermutung in Funktionenkörpern, Arch. Math. 4 (1953), 6–16.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Roquette, Arithmetischer Beweis der Riemannschen Vermutung in Kongruenzfunktionenkörpern beliebigen Geschlechts, 3. Reine Angew. Math. 191 (1953), 199–252.

    MathSciNet  MATH  Google Scholar 

  13. F. K. Schmidt, Zur Zahlentheorie in Körpern von der Charakteristik p, Sitzungsber. Phys.-Med. Soz. Erlangen 58/59 (1926/27), 159–172.

    Google Scholar 

  14. F. K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p, Math. Z. 33 (1931), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. M. Schmidt, Equations over Finite Fields: An Elementary Approach, Lecture Notes in Math., Vol. 536, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

    Book  Google Scholar 

  16. A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. Ind., No. 1041, Hermann, Paris, 1948.

    Google Scholar 

  17. A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Hindustan Book Agency

About this chapter

Cite this chapter

Narasimhan, A. (2002). Zeta Functions for Curves Defined over Finite Fields. In: Adhikari, S.D., Katre, S.A., Ramakrishnan, B. (eds) Current Trends in Number Theory. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-09-5_14

Download citation

Publish with us

Policies and ethics