Skip to main content

Hamburger’s Theorem on ζ(s) and the Abundance Principle for Dirichlet Series with Functional Equations

  • Chapter
Number Theory

Abstract

Ask any Ask any mathematician - indeed any number theorist - to state Hamburger’s theorem; chances are the response will be something like, “Riemann’s function ζ(s) is uniquely determined by its functional equation.” In fact, this is correct, as far as it goes, but (as is often the case) closer examination show that it does not go nearly far enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 56.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bochner, Some properties of modular relations, Ann. Math. 53 (1951), 332–360.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Bochner and Chandrasekharan, K., On Riemann’s functional equation, Ann. Math. 63 (1956), 336–360.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Chandrasekharan and Narashimhan, R., Hecke’s functional equation and arithmetical identities, Ann. Math. 74 (1961), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Eichler, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965), 169–180.

    MathSciNet  MATH  Google Scholar 

  5. H. Hamburger, Über die Riemannsche Funktionalgleichung der ζ -Funktion, Math. Zeit. 10 (1921), 240–254.

    Article  MATH  Google Scholar 

  6. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664–669.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Hecke, Lectures on Dirichlet series, modular functions and quadratic forms, Edwards, Ann Arbor, 1938.

    Google Scholar 

  8. E. Hecke, Herleitung des Euler-Produkts der Zetafunktion und einiger L-Reihen aus ihr Funktionalgleichung, Math. Ann. 119 (1944), 266–287.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Hurwitz, Grundlagen einer independenten Theorie der elliptischen Modulfunctionen und Theorie der Multiplicatorgleichungen erster Stufe, Math. Ann. 18 (1881), 528–591.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Knopp, Modular functions in analytic number theory, Markham, Chicago, 1970; 2nd ed., Chelsea, New York, 1993.

    MATH  Google Scholar 

  11. M. Knopp, Some new results on the Eichler cohomology of automorphic forms, Bull. Amer. Math. Soc. 80 (1974), 607–632.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Knopp, On Dirichlet series satisfying Riemann’s functional equation, Invent. Math. 117 (1994), 361–372.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Knopp and Sheingorn, ML, On Dirichlet series and Hecke triangle groups of infinite volume, Acta. Arith. 76 (1996), 227–244.

    MathSciNet  MATH  Google Scholar 

  14. J. Lehner, Automorphic forms with preassigned periods, J. Res. Nat. Bur. Standards Sect. B 73 (1969), 153–161.

    Article  MATH  Google Scholar 

  15. C.G. Lekkerkerker, On the zeros of a class of Dirichlet series, Doctoral dissertation, Utrecht, 1955, 64 pp.

    MATH  Google Scholar 

  16. B. Riemann, Über die Anzhl der Primzahlen unter einer gegebenen Grösse, Monatsberichte der Berliner Akad. (Nov., 1859), 671–680.

    Google Scholar 

  17. C.L. Siegel, Bemerkungen zu einem Satz von Hamburger über die Funktionalgleichung der Riemannschen Zetafunktion, Math. Ann. 86 (1922), 276–279.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Hindustan Book Agency and (India) Indian National Science Academy

About this chapter

Cite this chapter

Knopp, M.I. (2000). Hamburger’s Theorem on ζ(s) and the Abundance Principle for Dirichlet Series with Functional Equations. In: Bambah, R.P., Dumir, V.C., Hans-Gill, R.J. (eds) Number Theory. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-86279-02-6_12

Download citation

Publish with us

Policies and ethics