Skip to main content

Part of the book series: Texts and Readings in Mathematics ((TRM))

  • 160 Accesses

Abstract

Let M be a connected Riemannian manifold. The distance function d(x, y) (x, yM), which is by definition the inf limit of the lengths of the rectifiable arcs joining x to y, defines a metric compatible with the topology of M. By the Hopf-Rinow theorem, the following conditions are equivalent:

  1. (i)

    Every geodesic can be indefinitely extended, that is, the Levi-Cività connection of M is complete (III,3.1).

  2. (ii)

    M is complete as a metric space.

  3. (iii)

    Every bounded set is relatively compact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 35.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Bibliography

  1. E. Cartan, Sur certaines formes riemanniennes remarquables des géométries à groupe fondamental simple, Ann. E.N.S. 44 (1927), pp. 345–467.

    MATH  Google Scholar 

  2. E. Cartan, Groupes simples clos et ouverts et géométrie Riemannienne, Jour. Math. pur appl. 8 (1929), pp. 1–33.

    MATH  Google Scholar 

  3. E. Cartan, Leçons sur la géométrie des espaces de Riemann, 2e édition, Paris 1946, Gauthier Villars.

    MATH  Google Scholar 

  4. C. Ehresmann, Sur les espaces localement homogènes, Ens. Math. 35 (1936), pp. 317–333.

    MATH  Google Scholar 

  5. Harish-Chandra, Representations of semi-simple Lie groups VI, Am. J. Math 78 (1956), pp. 565–628.

    Google Scholar 

  6. S. Kobayashi, Le groupe des transformations qui laissent invariant le parallélisme, Coll. Topologie Strasbourg, 1954.

    MATH  Google Scholar 

  7. S. Kobayashi, Espaces à connexions affines et riemanniennes symétriques, Nagoya Math. Jour. 9 (1955), pp. 25–37.

    Article  MATH  Google Scholar 

  8. G.D. Mostow, Some new decomposition theorems for semi-simple groups, Memoirs A.M.S. 14 (1955), pp. 31–54.

    MathSciNet  MATH  Google Scholar 

  9. G.D. Mostow, A new proof of E. Cartan’s theorem on the topology of semi-simple Lie groups, Bull. A.M.S. 55 (1949), pp. 69–80.

    Article  MATH  Google Scholar 

  10. S. Myers-N. Steenrod, The group of isometries of a Riemannian manifold, Annals of Math. 40 (1939), p. 400–416.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Nomizu, The group of affine transformations of an affinely connected manifold, Proc. A.M.S. 4 (1953), pp. 816–823.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. de Rham, Sur la réductibilité d’un espace de Riemann, Comm. Math. Helv. 26 (1952), pp. 328–344.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Hindustan Book Agency

About this chapter

Cite this chapter

Borel, A. (1998). Riemannian Symmetric Spaces. In: Semisimple Groups and Riemannian Symmetric Spaces. Texts and Readings in Mathematics. Hindustan Book Agency, Gurgaon. https://doi.org/10.1007/978-93-80250-92-2_4

Download citation

Publish with us

Policies and ethics