Skip to main content

Probability Based Size Effect Representation for Failure in Civil Engineering Structures Built of Heterogeneous Materials

  • Chapter
  • First Online:
Computational Methods in Stochastic Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 22))

Abstract

In this work we discuss the failure analysis of civil engineering structures built of heterogeneous materials. The material heterogeneities call for a detailed representation of typical micro or meso-structure, which can be provided with the structured FE mesh representation as illustrated herein for 2D case and two-phase material. The building-block of such a representation is the constant stress triangular element that can contain two different phases and phase interface, along with all modifications needed to account for inelastic behavior in each phase and the corresponding inelastic failure modes at the phase interface. We further show by numerical simulations that the proposed structured FE mesh approach is much more efficient than the non-structured mesh representation. This feature is of special interest for probabilistic analysis, where a large amount of computation is needed in order to provide the corresponding statistics. One such case of probabilistic failure analysis is also considered in this work, where the geometry of the phase interface remains uncertain since it is obtained as the result of the Gibbs random process. This computation is further used to provide the appropriate probabilistic description of material parameters of phenomenological model of localized failure in terms of correlated random fields. Subsequent Monte Carlo computations of failure phenomena in simple tension test performed with such probabilistic phenomenological model clearly show the capability of presented approach to recover the size effects anywhere within a range between the two classical bounds which are Continuum Damage Mechanics and Linear Fracture Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  2. Bažant, Z.P.: Probability distribution of energetic-statistical size effect in quasibrittle fracture. Prob. Eng. Mech. 19, 307–319 (2004)

    Article  Google Scholar 

  3. Bornert, M., Bretheau T., Gilormini, P.: Homogeneisation en mcanique des matriaux, Hermes-Science, Paris (2001)

    Google Scholar 

  4. Brancherie, D., Ibrahimbegovic, A.: Novel anisotropic continuum-damage model representing localized failure. Part I: Theoretical formulation and numerical implementation. Eng. Comput. 26(1–2), 100–127 (2009)

    Google Scholar 

  5. Caflisch, C.A.: Monte Carlo and quasi-Monte Carlo Methods. Acta Numerica 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  6. Carpinteri, A.: On the mechanics of quasi-brittle materials with a fractal microstructure. Eng. Frac. Mech. 70, 2321–2349 (2003)

    Article  Google Scholar 

  7. Colliat, J.B., Hautefeuille, M., Ibrahimbegovic, A., Matthies, H.: Stochastic approach to quasi-brittle failure and size effect. Comptes Rend. Acad. Sci.: Mech. 335, 430–435 (2007)

    Google Scholar 

  8. Dolarevic, S., Ibrahimbegovic, A.: A modified three-surface elasto-plastic cap model and its numerical implementation. Comput. Struct. 85, 419–430 (2007)

    Article  Google Scholar 

  9. Gilormini, P.: A shortcoming of the classical non-linear extension of the self-consistent model. C.R. Acad. Sci. Paris 320 (116), 115–122 (1995)

    Google Scholar 

  10. Hautefeuille, M., Melnyk, S., Colliat, J.-B., Ibrahimbegovic, A.: Failure model for heterogeneous structures using structured meshes and accounting for probability aspects. Eng. Comput. 26(1–2), 166–184 (2009)

    Google Scholar 

  11. Ibrahimbegovic, A.: Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin (2009)

    MATH  Google Scholar 

  12. Ibrahimbegovic, A., Brancherie, D.: Combined hardening and softening constitutive model of plasticity: precursor to shear slip line failure. Comp. Mech. 31, 88–100 (2003)

    Article  MATH  Google Scholar 

  13. Ibrahimbegovic, A., Markovic, D.: Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures. Comp. Method Appl. Mech. Eng. 192, 3089–3107 (2003)

    Article  MATH  Google Scholar 

  14. Ibrahimbegovic, A., Melnyk, S.: Embedded discontinuity finite element method for modeling of localized failure in heterogeneous materials with structured mesh: an alternative to extended finite element method. Comp. Mech. 40, 149–155 (2007)

    Article  MATH  Google Scholar 

  15. Ibrahimbegovic, A., Wilson, E.L.: A modified method of incompatible modes. Commun. Appl. Numer. Meth. 7, 187–194 (1991)

    Article  MATH  Google Scholar 

  16. Jaynes, E.T.: Probability Theory: The Logic of a Science. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  17. Kanit, T., Forest, S., Galliet, I., Mounoury V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solid Struct. 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  18. Kassiotis, C., Hautefeuille, M.: coFeap’s Manual, LMT-Cachan Internal Report, 2, (2008)

    Google Scholar 

  19. Kendall, M.G.: On the reconciliation of theories of probability. Biometrika 36, 101–116 (1949)

    MATH  MathSciNet  Google Scholar 

  20. Kucerova, A., Brancherie, D., Ibrahimbegovic, A., Zeman, J., Bitnar, Z.: Novel anisotropic continuum-damage model representing localized failure. Part II: Identification from tests under heterogeneous test fields. Eng. Comput. 26(1–2), 128–144 (2009)

    Google Scholar 

  21. Ladeveze, P., Loiseau O., Dureisseix, D.: A micro-macro and parallel computational strategy for highly heterogeneous structures. Int. J. Numer. Meth. Eng. (2001)

    Google Scholar 

  22. Loève, M.: Probability Theory – 4th edn, 1 Macmillan, New York, NY (1977)

    Google Scholar 

  23. Markovic, D., Ibrahimbegovic, A.: On micro-macro interface conditions for micro-scale based fem for inelastic behavior of heterogeneous material. Comput. Meth. Appl. Mech. Eng. 193, 5503–5523 (2004)

    Article  MATH  Google Scholar 

  24. Matthies, H.G., Niekamp, R., Steindorf, J.: Algorithms for strong coupling procedures. Comput. Meth. Appl. Mech. Eng. 195(17–18), 2028–2049 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Niekamp, R., Matthies, H.G.: CTL: A C\(++\) Communication Template Library, GAMM Jahreshauptversammlung in Dresden, 21. 27. March (2004)

    Google Scholar 

  26. Niekamp, R., Markovic, D., Ibrahimbegović, A., Matthies, H. G., Taylor, R. L.: Multi-scale Modelling of Heterogeneous structures with inelastic constitutive behaviour: Part II – Software coupling implementation aspects. Eng. Comput. 26, 6–28 (2009)

    Article  Google Scholar 

  27. Ostoja-Starzewski, M.: Material spatial randomness: From statistical to representative volume element. Probabilistic Eng. Mech. 21, 112–132 (2006)

    Article  Google Scholar 

  28. Pijaudier-Cabot, G., Bažant, Z. P.: Nonlocal damage theory. J. Eng. Mech. 113, 1512–1533 (1987)

    Article  Google Scholar 

  29. Sab, K., Lalaai, I.: Une approche unifiée des effets d’échelle dans les matériaux quasi fragiles, C. R. Acad. Sci. Paris II 316(9), 1187–1192 (1993)

    MATH  Google Scholar 

  30. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656, J (1948).

    Google Scholar 

  31. Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Meth. Appl. Mech. Eng. 48, 101–118 (1985)

    Article  MATH  Google Scholar 

  32. Simo, J.C., Oliver, J., Armero, F.: An analysis of strong discontinuity induced by strain softening solution in rate independent solids. Comp. Mech. 12, 277–296 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of function. Soviet Math. Dokl. 4, 240–243 (1963)

    Google Scholar 

  34. Soize, C.: Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 109(5), 1979–1996 (2001)

    Article  Google Scholar 

  35. Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 293–297 (1951)

    Google Scholar 

  36. Wilson, E.L.: The static condensation algorithm. Int. J. Num. Method Eng. 8, 199–203 (1974)

    Google Scholar 

  37. Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models, Numerical and Computer Methods in Structural Mechanics, pp. 43–57, Academic, New York (1973)

    Google Scholar 

  38. Yaman, I.O., Hearn, N., Aktan, H.M.: Active and non-active porosity in concrete. Part I: Experimental evidence. Mater. Struct. 15, 102–109 (2002)

    Google Scholar 

  39. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, 6th edition, Vols. 1 and 2, Elsevier, Oxford (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the French Ministry of Research. The collaboration with TU Braunchweig research group of H.G. Matthies, especially R. Niekamp and M. Krosche, and PROCOPE program funding are also gratefully acknowledged. AI also acknowledges the Research Award of the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ibrahimbegovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ibrahimbegovic, A., Colliat, JB., Hautefeuille, M., Brancherie, D., Melnyk, S. (2011). Probability Based Size Effect Representation for Failure in Civil Engineering Structures Built of Heterogeneous Materials. In: Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds) Computational Methods in Stochastic Dynamics. Computational Methods in Applied Sciences, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9987-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9987-7_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9986-0

  • Online ISBN: 978-90-481-9987-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics