Skip to main content

Auto-parametric Stability Loss and Post-critical Behaviour of a Three Degrees of Freedom System

  • Chapter
  • First Online:
Computational Methods in Stochastic Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 22))

Abstract

Slender structures exposed to a strong vertical component of an earthquake excitation are endangered by auto-parametric resonance effect. This non-linear dynamic process in a post-critical regime caused heavy damages or collapses of many towers, bridges and other structures due to earthquake attack in the epicenter area.

If an amplitude of a vertical harmonic excitation in a structure foundation exceeds a certain limit, vertical response at the top of the structure looses its stability and a dominant horizontal response component arises. In subcritical linear regime only semi-trivial solution being represented by the vertical response component is observed, while horizontal components remain trivial. Therefore, vertical and horizontal response components are independent.

In post-critical regime (auto-parametric resonance) the dynamic non-linear interaction of vertical and horizontal response components occurs. This process results in dominant horizontal response components leading to a failure of the structure. The broadband random non-stationary excitation of the seismic type can be particularly dangerous in this connection.

Qualitatively different post-critical response types have been detected when sweeping throughout the frequency interval beyond the stability limit. Deterministic as well as chaotic response types have been observed. In general they can occur in a steady state, quasi-periodic and completely undetermined regimes including a possible energy transflux among degrees of freedom. Post-critical limit cycles are discussed. The processes of transition from semi-trivial to post-critical state are investigated in case of time limited excitation period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abarbanel, H.D.I., Brown, R., Kadtke, J.B.: Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. Phys. Rev. A 41, 1742 (1990)

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    MATH  Google Scholar 

  3. Bajaj, A.K., Chang, S.I., Johnson, J.M.: Amplitude modulated dynamics of a resonantly excited autoparametric two degree of freedom system. Nonlinear Dynam. 5, 433–457 (1994)

    Article  Google Scholar 

  4. Baker, G.L.: Control of the chaotic driven pendulum. Am. J. Phys. 63, 832–838 (1995)

    Article  Google Scholar 

  5. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, M.: Lyapunov characteristic exponents for smooth dynamical systems and Hamiltonian systems: A method for computing all of them. Part 2, Numerical application. Meccanica 15, 21 (1980)

    Article  Google Scholar 

  6. Burton, T.D.: Non-linear oscillator limit cycle analysis using a time transformation approach. Int. J. Non-linear Mechanics 17(1), 7–19 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cameron, T.M., Griffin, J.H.: An alternating frequency/time domain method for calculating the steady state response on nonlinear dynamic systems. ASME J. Appl. Mech. 56, 149–154 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chetayev, N.G.: Stability of Motion (in Russian). Nauka, Moscow (1962)

    Google Scholar 

  9. Chossat, P., Lauterbach, R.: Methods in Equivalent Bifurcations and Dynamical Systems. World Scientific, Singapore (2000)

    Google Scholar 

  10. El Rifai, K., Haller, G., Bajaj, A.K.: Global dynamics of an autoparametric spring-mass-pendulum system. Nonlinear Dynam. 49, 105–116 (2007)

    Article  MATH  Google Scholar 

  11. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1983)

    MATH  Google Scholar 

  12. Hammel, S.M.: A noise reduction method for chaotic systems. Phys. Lett. A 148, 421 (1990)

    Article  MathSciNet  Google Scholar 

  13. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear oscillations of an autoparametric system. ASME J. Appl. Mech. 50(3), 657–662 (1983)

    Article  MATH  Google Scholar 

  14. Haxton, R.S., Barr, A.D.S.: The autoparametric vibration absorber. ASME J. Appl. Mech. 94, 119–125 (1974)

    Google Scholar 

  15. Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific, London (1992)

    MATH  Google Scholar 

  16. Lee, W.K., Hsu, C.S.: A global analysis of an harmonically excited spring-pendulum system with internal resonance. J. Sound Vib. 171(3), 335–359 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lichtenberg, A.J., Lieberman, M.J.: Regular and Stochastic Motion. Springer, New York (1983)

    MATH  Google Scholar 

  18. Manuca, R., Savit, R.: Stationarity and nonstationarity in time series analysis. Physica D, 99, 134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mazzino, A., Musacchio, S., Vulpiani, A.: Multiple-scale analysis and renormalization for preasymptotic scalar transport. Phys. Rev. E, 71, 011113 (2004)

    Article  MathSciNet  Google Scholar 

  20. Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973)

    MATH  Google Scholar 

  21. Murphy, K.D., Bayly, P.V., Virgin, L.N., Gottwald, J.A.: Measuring the stability of periodic attractors using perturbation-induced transients: applications to two non-linear oscillators. J. Sound Vib. 172(1), 85–102 (1994)

    Article  Google Scholar 

  22. Nabergoj, R., Tondl, A.: A simulation of parametric ship rolling: Effects of hull bending and torsional elasticity. Nonlinear Dynam. 6, 265–284 (1994)

    Article  Google Scholar 

  23. Náprstek, J.: Non-linear self-excited random vibrations and stability of an SDOF system with parametric noises. Meccanica 33, 267–277 (1998)

    Article  MATH  Google Scholar 

  24. Náprstek, J., Fischer, C.: Auto-parametric semi-trivial and post-critical response of a spherical pendulum damper. In: Proceedings of the 11th Conference on Civil, Structural and Environmental Engineering Computing (B.H.V. Topping edt.). Civil-Comp Press, Malta St.Julian, CD, paper #CC2007/2006/0020, pp. 18 (2007)

    Google Scholar 

  25. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  26. Ren, Y., Beards, C.F.: A new receptance-based perturbative multi-harmonic balance method for the calculation of the steady state response of non-linear systems. J. Sound Vib. 172(5), 593–604 (1994)

    Article  MATH  Google Scholar 

  27. Rosenstein, M.T., Colins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sandri, M.: Numerical calculation of Lyapunov exponents. Mathematica J. 6, 78–84 (1996)

    Google Scholar 

  29. Schuster, H.G.: Deterministic Chaos: An Introduction, 4th edn. VCH, Weinheim (2005)

    Book  MATH  Google Scholar 

  30. Skokos, C.: The Lyapunov characteristic exponents and their computation. Cornell University arXiv, http://arxiv.org/abs/0811.0882v2 (2009)

  31. Thompson, J.M.T., Stewart, H.B.: Nonlinear Dynamics and Chaos, 2nd edn. Wiley, Chichester (2002)

    MATH  Google Scholar 

  32. Tondl, A.: Quenching of Self-Excited Vibrations. Academia, Prague (1991)

    Google Scholar 

  33. Tondl, A.: To the analysis of autoparametric systems. Z. Angew. Math. Mech. 77(6), 407–418 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R.: Autoparametric Resonance in Mechanical Systems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  35. Xu, Z., Cheung, Y.K.: Averaging method using generalized harmonic functions for strongly non-linear oscillators. J. Sound Vib. 174(4), 563–576 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The support of the Czech Scientific Foundation No. 103/09/0094, Grant Agency of the ASCR No. IAA200710902, IAA200710805 and AV0Z20710524 research plan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Náprstek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Náprstek, J., Fischer, C. (2011). Auto-parametric Stability Loss and Post-critical Behaviour of a Three Degrees of Freedom System. In: Papadrakakis, M., Stefanou, G., Papadopoulos, V. (eds) Computational Methods in Stochastic Dynamics. Computational Methods in Applied Sciences, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9987-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-9987-7_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-9986-0

  • Online ISBN: 978-90-481-9987-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics